Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 3, pp 1049–1056 | Cite as

An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations

  • Anne Katrin Ringel
  • Erik Wilkens
  • Diana Hortig
  • Thomas Willke
  • Klaus-Dieter Vorlop
Biotechnological products and process engineering

Abstract

A new screening method was developed and established to find high-performance bacteria for the conversion of crude glycerol to 1,3-propanediol. Three soil samples from palm oil-rich habitats were investigated using crude glycerol of a German biodiesel plant. Nine promising 1,3-propanediol producers could be found. Because of a special pH buffer system, a fast evaluation on microscale and high 1,3-propanediol concentrations up to 40 g L−1 could be achieved. Three strains demonstrated very high product tolerance and were identified as Clostridium butyricum. Two strains, AKR91b and AKR102a, grew and produced 1,3-propanediol in the presence of 60 g L−1 initial 1,3-propanediol, the strain AKR92a even in the presence of 77 g L−1 1,3-propanediol. The strains AKR91b and AKR102a tolerated up to 150 g L−1 crude glycerol and produced 80% of the 1,3-propanediol attained from pure glycerol of the same concentration. Further criteria for the choice of a production strain were the pathogenicity (risk class), ability to grow on low-cost media, e.g., with less yeast extract, and robustness, e.g., process stability after several bioconversions. Overall, the strain C. butyricum AKR102a was chosen for further process optimization and scale-up due to its high productivity and high final concentration in a pH-regulated bioreactor.

Keywords

Screening 1,3-Propanediol Crude glycerol Microscale Product tolerance 

Notes

Acknowledgments

This project was funded by the German Federal Ministry of Education and Research (BMBF) (IG-Biotech 0315026E).

References

  1. Abbad-Andaloussi S, Manginotdurr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417Google Scholar
  2. Barbirato F, Camarasaclaret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism—Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793CrossRefGoogle Scholar
  3. Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36:592–597CrossRefGoogle Scholar
  4. Colin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54:201–205CrossRefGoogle Scholar
  5. Colin T, Bories A, Lavigne C, Moulin G (2001) Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43:238–243CrossRefGoogle Scholar
  6. Daniel R, Boenigk R, Gottschalk G (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151–2156Google Scholar
  7. DSMZ (2011) German collection of microorganisms and cell cultures, list of media. At http://www.dsmz.de/microorganisms/media_list.php. Accessed 19 Jul 2011
  8. Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae—functions of the coenzyme-B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419Google Scholar
  9. Forsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643Google Scholar
  10. Freund A (1881) Uber die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Berichte der Deutschen Chemischen Gesellschaft Berlin 10:636–641Google Scholar
  11. Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446CrossRefGoogle Scholar
  12. Hao J, Lin R, Zheng Z, Liu H, Liu D (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J Microbiol Biotechnol 24:1731–1740CrossRefGoogle Scholar
  13. Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforschung Volkenrode 55:261–267Google Scholar
  14. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126CrossRefGoogle Scholar
  15. Luthi-Peng Q, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296CrossRefGoogle Scholar
  16. Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86CrossRefGoogle Scholar
  17. Moon C, Ahn JH, Kim SW, Sang BI, Um Y (2009) Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl Biochem Biotechnol 161:502–510CrossRefGoogle Scholar
  18. Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling of Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75:7610–7616CrossRefGoogle Scholar
  19. Petitdemange E, Durr C, Andaloussi SA, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15:498–502CrossRefGoogle Scholar
  20. Petrova P, Petrov K, Beschkov V (2009) Production of 1,3-propanediol from glycerol by newly isolated strains of Klebsiella pneumoniae. Comptes Rendus de l Academie Bulgare des Sciences 62:233–242Google Scholar
  21. Pflugmacher U, Gottschalk G (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol 41:313–316CrossRefGoogle Scholar
  22. Rehman A, Saman WRG, Nomura N, Sato S, Matsumura M (2008) Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production by Clostridium butyricum. J Chem Technol Biotechnol 83:1072–1080CrossRefGoogle Scholar
  23. Reimann A, Abbad-Andaloussi S, Biebl H, Petitdemange H (1998) 1,3-Propanediol formation with product-tolerant mutants of Clostridium butyricum DSM 5431 in continuous culture: productivity, carbon and electron flow. J Appl Microbiol 84:1125–1130CrossRefGoogle Scholar
  24. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913CrossRefGoogle Scholar
  25. Schutz H, Radler F (1984) Anaerobic reduction of glycerol to propanediol-1.3 by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5:169–178Google Scholar
  26. Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2011) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3595-6
  27. Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol 110:831–840CrossRefGoogle Scholar
  28. Wittlich P (2001) Biotechnologische Herstellung von 1,3-Propandiol mit immobilisierten Zellen von Clostridium butyricum NRRL 1024 und thermophilen Mikroorgansimen. Dissertation, TU BraunschweigGoogle Scholar
  29. Wittlich P, Themann A, Vorlop KD (2001) Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain. Biotechnol Lett 23:463–466CrossRefGoogle Scholar
  30. Yang G, Tian JS, Li JL (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024CrossRefGoogle Scholar
  31. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219CrossRefGoogle Scholar
  32. Zeng AP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Engineering 14:169–175CrossRefGoogle Scholar
  33. Zeng AP, Biebl H, Schlieker H, Deckwer WD (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae—regulation of reducing equivalent balance and product formation. Enzym Microb Technol 15:770–779CrossRefGoogle Scholar
  34. Zeng AP, Ross A, Biebl H, Tag C, Günzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911CrossRefGoogle Scholar
  35. Zhang GL, Ma BB, Xu XL, Li C, Wang LW (2007) Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae. Biochem Eng J 37:256–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anne Katrin Ringel
    • 1
  • Erik Wilkens
    • 1
  • Diana Hortig
    • 1
  • Thomas Willke
    • 1
  • Klaus-Dieter Vorlop
    • 1
  1. 1.Johann Heinrich von Thünen-Institut (vTI)Institute of Agricultural Technology and Biosystems Engineering (AB)BraunschweigGermany

Personalised recommendations