Applied Microbiology and Biotechnology

, Volume 93, Issue 6, pp 2411–2423 | Cite as

Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity

  • Yanhong Li
  • Hai Yu
  • Hongzhi Cao
  • Saddam Muthana
  • Xi ChenEmail author
Biotechnologically relevant enzymes and proteins


Cytidine 5′-monophosphate (CMP)-sialic acid synthetases (CSSs) catalyze the formation of CMP-sialic acid from CTP and sialic acid, a key step for sialyltransferase-catalyzed biosynthesis of sialic acid-containing oligosaccharides and glycoconjugates. More than 50 different sialic acid forms have been identified in nature. To facilitate the enzymatic synthesis of sialosides with diverse naturally occurring sialic acid forms and their non-natural derivatives, CMP-sialic acid synthetases with promiscuous substrate specificity are needed. Herein we report the cloning, characterization, and substrate specificity studies of a new CSS from Pasteurella multocida strain P-1059 (PmCSS) and a CSS from Haemophillus ducreyi (HdCSS). Based on protein sequence alignment and substrate specificity studies of these two CSSs and a Neisseria meningitidis CSS (NmCSS), as well as crystal structure modeling and analysis of NmCSS, NmCSS mutants (NmCSS_S81R and NmCSS_Q163A) with improved substrate promiscuity were generated. The strategy of combining substrate specificity studies of enzymes from different sources and protein crystal structure studies can be a general approach for designing enzyme mutants with improved activity and substrate promiscuity.


Carbohydrate synthesis CMP-sialic acid CMP-sialic acid synthetase Mutagenesis Sialic acid Substrate specificity 



This work was support by NIH grants R01GM076360 and R01HD065122, the Alfred P. Sloan Research Fellowship, the Camille Dreyfus Teacher-Scholarship, and the UC-Davis Chancellor’s Fellowship.

Supplementary material

253_2011_3579_MOESM1_ESM.doc (88 kb)
ESM 1 (DOC 88 kb)


  1. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469CrossRefGoogle Scholar
  2. Bravo IG, Garcia-Vallve S, Romeu A, Reglero A (2004) Prokaryotic origin of cytidylyltransferases and alpha-ketoacid synthases. Trends Microbiol 12:120–128CrossRefGoogle Scholar
  3. Bugla-Ploskonska G, Rybka J, Futoma-Koloch B, Cisowska A, Gamian A, Doroszkiewicz W (2010) Sialic acid-containing lipopolysaccharides of Salmonella O48 strains—potential role in camouflage and susceptibility to the bactericidal effect of normal human serum. Microb Ecol 59:601–613CrossRefGoogle Scholar
  4. Cao H, Li Y, Lau K, Muthana S, Yu H, Cheng J, Chokhawala HA, Sugiarto G, Zhang L, Chen X (2009a) Sialidase substrate specificity studies using chemoenzymatically synthesized sialosides containing C5-modified sialic acids. Org Biomol Chem 7:5137–5145CrossRefGoogle Scholar
  5. Cao H, Muthana S, Li Y, Cheng J, Chen X (2009b) Parallel chemoenzymatic synthesis of sialosides containing a C5-diversified sialic acid. Bioorg Med Chem Lett 19:5869–5871CrossRefGoogle Scholar
  6. Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176CrossRefGoogle Scholar
  7. Ferrero MA, Aparicio LR (2010) Biosynthesis and production of polysialic acids in bacteria. Appl Microbiol Biotechnol 86:1621–1635CrossRefGoogle Scholar
  8. Ghalambor MA, Heath EC (1966) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-d-manno-octulosonate synthetase. J Biol Chem 241:3216–3221Google Scholar
  9. Haft RF, Wessels MR (1994) Characterization of CMP-N-acetylneuraminic acid synthetase of group B Streptococci. J Bacteriol 176:7372–7374Google Scholar
  10. Hartlieb S, Gunzel A, Gerardy-Schahn R, Munster-Kuhnel AK, Kirschning A, Drager G (2008) Chemoenzymatic synthesis of CMP-N-acetyl-7-fluoro-7-deoxy-neuraminic acid. Carbohydr Res 343:2075–2082CrossRefGoogle Scholar
  11. Heyes DJ, Levy C, Lafite P, Roberts IS, Goldrick M, Stachulski AV, Rossington SB, Stanford D, Rigby SE, Scrutton NS, Leys D (2009) Structure-based mechanism of CMP-2-keto-3-deoxymanno-octulonic acid synthetase: convergent evolution of a sugar-activating enzyme with DNA/RNA polymerases. J Biol Chem 284:35514–35523CrossRefGoogle Scholar
  12. Horsfall LE, Nelson A, Berry A (2010) Identification and characterization of important residues in the catalytic mechanism of CMP-Neu5Ac synthetase from Neisseria meningitidis. FEBS J 277:2779–2790CrossRefGoogle Scholar
  13. Jelakovic S, Schulz GE (2001) The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. J Mol Biol 312:143–155CrossRefGoogle Scholar
  14. Krapp S, Munster-Kuhnel AK, Kaiser JT, Huber R, Tiralongo J, Gerardy-Schahn R, Jacob U (2003) The crystal structure of murine CMP-5-N-acetylneuraminic acid synthetase. J Mol Biol 334:625–637CrossRefGoogle Scholar
  15. Li Y, Yu H, Cao H, Lau K, Muthana S, Tiwari VK, Son B, Chen X (2008) Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 79:963–970CrossRefGoogle Scholar
  16. Li Y, Cao H, Yu H, Chen Y, Lau K, Qu J, Thon V, Sugiarto G, Chen X (2011) Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Mol Biosyst 7:1060–1072CrossRefGoogle Scholar
  17. Liu G, Jin C (2004) CMP-N-acetylneuraminic acid synthetase from Escherichia coli K1 is a bifunctional enzyme: identification of minimal catalytic domain for synthetase activity and novel functional domain for platelet-activating factor acetylhydrolase activity. J Biol Chem 279:17738–17749CrossRefGoogle Scholar
  18. Mandrell RE, Apicella MA (1993) Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology 187:382–402CrossRefGoogle Scholar
  19. Martinez J, Steenbergen S, Vimr E (1995) Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 177:6005–6010Google Scholar
  20. Mizanur RM, Pohl NL (2007) Cloning and characterization of a heat-stable CMP-N-acylneuraminic acid synthetase from Clostridium thermocellum. Appl Microbiol Biotechnol 76:827–834CrossRefGoogle Scholar
  21. Mizanur RM, Pohl NL (2008) Bacterial CMP-sialic acid synthetases: production, properties, and applications. Appl Microbiol Biotechnol 80:757–765CrossRefGoogle Scholar
  22. Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16:105–115CrossRefGoogle Scholar
  23. Morley TJ, Withers SG (2010) Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J Am Chem Soc 132:9430–9437CrossRefGoogle Scholar
  24. Mosimann SC, Gilbert M, Dombroswki D, To R, Wakarchuk W, Strynadka NC (2001) Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase in the presence and absence of CDP. J Biol Chem 276:8190–8196CrossRefGoogle Scholar
  25. Munster AK, Weinhold B, Gotza B, Muhlenhoff M, Frosch M, Gerardy-Schahn R (2002) Nuclear localization signal of murine CMP-Neu5Ac synthetase includes residues required for both nuclear targeting and enzymatic activity. J Biol Chem 277:19688–19696CrossRefGoogle Scholar
  26. Munster-Kuhnel AK, Tiralongo J, Krapp S, Weinhold B, Ritz-Sedlacek V, Jacob U, Gerardy-Schahn R (2004) Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology 14:43R–51RCrossRefGoogle Scholar
  27. Oschlies M, Dickmanns A, Haselhorst T, Schaper W, Stummeyer K, Tiralongo J, Weinhold B, Gerardy-Schahn R, von Itzstein M, Ficner R, Munster-Kuhnel AL (2009) A C-terminal phosphatase module conserved in vertebrate CMP-sialic acid synthetases provides a tetramerization interface for the physiologically active enzyme. J Mol Biol 393:83–97CrossRefGoogle Scholar
  28. Rauvolfova J, Venot A, Boons GJ (2008) Chemo-enzymatic synthesis of C-9 acetylated sialosides. Carbohydr Res 343:1605–1611CrossRefGoogle Scholar
  29. Schauer R (1985) Sialic acids and their role as biological masks. Trends Biochem Sci 10:357–360CrossRefGoogle Scholar
  30. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499CrossRefGoogle Scholar
  31. Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822CrossRefGoogle Scholar
  32. Steenbergen SM, Lichtensteiger CA, Caughlan R, Garfinkle J, Fuller TE, Vimr ER (2005) Sialic acid metabolism and systemic pasteurellosis. Infect Immun 73:1284–1294CrossRefGoogle Scholar
  33. Tatum FM, Tabatabai LB, Briggs RE (2009) Sialic acid uptake is necessary for virulence of Pasteurella multocida in turkeys. Microb Pathog 46:337–344CrossRefGoogle Scholar
  34. Terada T, Kitazume S, Kitajima K, Inoue S, Ito F, Troy FA, Inoue Y (1993) Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase. J Biol Chem 268:2640–2648Google Scholar
  35. Timmis KN, Boulnois GJ, Bitter-Suermann D, Cabello FC (1985) Surface components of Escherichia coli that mediate resistance to the bactericidal activities of serum and phagocytes. Curr Top Microbiol Immunol 118:197–218CrossRefGoogle Scholar
  36. Tullius MV, Munson RS Jr, Wang J, Gibson BW (1996) Purification, cloning, and expression of a cytidine 5′-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J Biol Chem 271:15373–15380CrossRefGoogle Scholar
  37. Vann WF, Silver RP, Abeijon C, Chang K, Aaronson W, Sutton A, Finn CW, Lindner W, Kotsatos M (1987) Purification, properties, and genetic location of Escherichia coli cytidine 5′-monophosphate N-acetylneuraminic acid synthetase. J Biol Chem 262:17556–17562Google Scholar
  38. Vimr E, Lichtensteiger C, Steenbergen S (2000) Sialic acid metabolism’s dual function in Haemophilus influenzae. Mol Microbiol 36:1113–1123CrossRefGoogle Scholar
  39. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153CrossRefGoogle Scholar
  40. Viswanathan K, Tomiya N, Park J, Singh S, Lee YC, Palter K, Betenbaugh MJ (2006) Expression of a functional Drosophila melanogaster CMP-sialic acid synthetase. Differential localization of the Drosophila and human enzymes. J Biol Chem 281:15929–15940CrossRefGoogle Scholar
  41. Warren L, Blacklow RS (1962) The biosynthesis of cytidine 5′-monophospho-N-acetylneuraminic acid by an enzyme from Neisseria meningitidis. J Biol Chem 237:3527–3534Google Scholar
  42. Yu H, Yu H, Karpel R, Chen X (2004) Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 12:6427–6435CrossRefGoogle Scholar
  43. Yu H, Chokhawala H, Karpel R, Yu H, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127:17618–17619CrossRefGoogle Scholar
  44. Yu H, Chokhawala HA, Huang S, Chen X (2006a) One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 1:2485–2492CrossRefGoogle Scholar
  45. Yu H, Huang S, Chokhawala H, Sun M, Zheng H, Chen X (2006b) Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 45:3938–3944CrossRefGoogle Scholar
  46. Yu H, Ryan W, Yu H, Chen X (2006c) Characterization of a bifunctional cytidine 5′-monophosphate N-acetylneuraminic acid synthetase cloned from Streptococcus agalactiae. Biotechnol Lett 28:107–113CrossRefGoogle Scholar
  47. Yu H, Cheng J, Ding L, Khedri Z, Chen Y, Chin S, Lau K, Tiwari VK, Chen X (2009) Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J Am Chem Soc 131:18467–18477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yanhong Li
    • 1
  • Hai Yu
    • 1
  • Hongzhi Cao
    • 1
    • 2
  • Saddam Muthana
    • 1
    • 3
  • Xi Chen
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of California-DavisDavisUSA
  2. 2.National Glycoengineering Research CenterShandong UniversityJinanChina
  3. 3.Chemical Biology Laboratory, National Cancer Institute at FrederickNational Institutes of HealthFrederickUSA

Personalised recommendations