Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 6, pp 2387–2394 | Cite as

Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118

  • Gregory L. CôtéEmail author
  • Christopher D. Skory
Biotechnologically relevant enzymes and proteins

Abstract

We have cloned a glucansucrase from the type strain of Leuconostoc mesenteroides (NRRL B-1118; ATCC 8293) and successfully expressed the enzyme in Escherichia coli. The recombinant processed enzyme has a putative sequence identical to the predicted secreted native enzyme (1,473 amino acids; 161,468 Da). This enzyme catalyzed the synthesis of a water-insoluble α-D-glucan from sucrose (K M 12 mM) with a broad pH optimum between 5.0 and 5.7 in the presence of calcium. Removal of calcium with dialysis resulted in lower activity in the acidic pH range, effectively shifting the pH optimum to 6.0–6.2. The enzyme was quickly inactivated at temperatures above approximately 45°C. The presence of dextran offered some protection from thermal inactivation between room temperature and 40°C but had little effect above 45°C. NMR and methylation analysis of the water-insoluble α-d-glucan revealed that it had approximately equal amounts of α(1 → 3)-linked and α(1 → 6)-linked d-glucopyranosyl units and a low degree of branching.

Keywords

Leuconostoc mesenteroides Dextransucrase Glucansucrase Glucosyltransferase 

Notes

Acknowledgments

We sincerely appreciate the technical contributions of Suzanne Unser and Kristina Glenzinski. We also thank Dr. Karl Vermillion for obtaining the NMR spectra.

References

  1. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  2. Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Simeon M, Monsan P, Willemot RM (2002) Molecular characterization of DSR-E, an α-1,2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184:5753–5761CrossRefGoogle Scholar
  3. Brock Neely W, Hallmark J (1961) Dextransucrase V and the role of metal ions in enzyme catalysis. Nature 191:385–386CrossRefGoogle Scholar
  4. Chellapandian M, Larios C, Sanchez-Gonzalez M, Lopez-Munguía A (1998) Production and properties of a dextransucrase from Leuconostoc mesenteroides IBT-PQ isolated from ‘pulque’, a traditional Aztec alcoholic beverage. J Ind Microbiol Biotechnol 21:51–56CrossRefGoogle Scholar
  5. Côté GL, Leathers TD (2009) Insoluble glucans from planktonic and biofilm cultures of mutants of Leuconostoc mesenteroides NRRL B-1355. Appl Microbiol Biotechnol 82:149–154CrossRefGoogle Scholar
  6. Côté GL, Robyt JF (1982) Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1 → 6), (1 → 3)-α-d-glucan. Carbohydr Res 101:57–74CrossRefGoogle Scholar
  7. Côté GL, Sheng S, Dunlap CA (2008) Alternansucrase acceptor products. Biocatal Biotransform 26:161–168CrossRefGoogle Scholar
  8. Funane K, Mizuno K, Takahara H, Kobayashi M (2000) Gene encoding a dextransucrase-like protein in Leuconostoc mesenteroides NRRL B-512F. Biosci Biotechnol Biochem 64:29–38CrossRefGoogle Scholar
  9. Funane K, Ishii T, Matsushita M, Hori K, Mizuno K, Takahara H, Kitamura Y, Kobayashi M (2001) Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leuconostoc mesenteroides NRRL B-512F. Carbohydr Res 334:19–25CrossRefGoogle Scholar
  10. Funane K, Ishii T, Ono H, Kobayashi M (2005) Changes in linkage pattern of glucan products induced by substitution of Lys residues in the dextransucrase. FEBS Lett 579:4739–4745CrossRefGoogle Scholar
  11. Germaine GR, Schachtele CF, Chludzinski AM (1974) Rapid filter paper assay for the dextransucrase activity from Streptococcus mutans. J Dent Res 53:1355–1360CrossRefGoogle Scholar
  12. Guggenheim B, Newbrun E (1969) Extracellular glucosyltransferase activity of an HS strain of Streptococcus mutans. Helv Odont Acta 13:84–97Google Scholar
  13. Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384Google Scholar
  14. Itaya K, Yamamoto T (1975) Dextransucrase as an enzyme associating with alkaline earth metal ions. Agric Biol Chem 39:1187–1192CrossRefGoogle Scholar
  15. Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, Iwata S (2011) Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Molec Biol 408:177–186CrossRefGoogle Scholar
  16. Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) Characterization and classification of dextrans from ninety-six strains of bacteria. J Am Chem Soc 76:5041–5052CrossRefGoogle Scholar
  17. Kaseda K, Kodama T, Fukui K, Hirose K (2001) A novel approach for purification of recombinant proteins using the dextran-binding domain. FEBS Lett 500:141–144CrossRefGoogle Scholar
  18. Kobayashi M, Matsuda K (1980) Characterization of the multiple forms and main component of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Biochim Biophys Acta 614:46–62Google Scholar
  19. Kobayashi M, Yokoyama I, Matsuda K (1985) Effectors differently modulating the dextransucrase activity of Leuconostoc mesenteroides. Agric Biol Chem 49:3189–3195CrossRefGoogle Scholar
  20. Kralj S, Grijpstra P, Van Leeuwen SS, Kamerling JP, Dijkhuizen L (2009) Characterization of a dextransucrase (DSRP) with two catalytic domains from Leuconostoc mesenteroides ATCC 8293. Abstracts, Eighth Carbohydrate Bioengineering Meeting, Naples, ItalyGoogle Scholar
  21. Lawford GR, Kligerman A, Williams T (1979) Dextran biosynthesis and dextransucrase production by continuous culture of Leuconostoc mesenteroides. Biotechnol Bioeng 21:1121–1131CrossRefGoogle Scholar
  22. Leathers TD (2002) Dextran. In: Vandamme EJ, DeBaets S, Steinbüchel A (eds) Biopolymers. Polysaccharides. I Polysaccharides from Prokaryotes, vol 5. Wiley, Weiheim, pp 299–321Google Scholar
  23. Leathers TD, Côté GL (2008) Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355. Appl Microbiol Biotechnol 78:1025–1031CrossRefGoogle Scholar
  24. López-Munguía A, Pelenc V, Remaud M, Biton J, Michel JM, Lang C, Paul F, Monsan P (1993) Production and purification of alternansucrase, a glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355, for the synthesis of oligoalternans. Enzyme Microb Technol 15:77–85CrossRefGoogle Scholar
  25. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616CrossRefGoogle Scholar
  26. Malten M, Hollmann R, Decker WD, Jahn D (2004) Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium. Biotechnol Bioeng 89:206–218CrossRefGoogle Scholar
  27. Miller AW, Robyt JF (1984) Stabilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F by nonionic detergents, poly(ethylene glycol) and high-molecular-weight dextran. Biochim Biophys Acta 785:89–96CrossRefGoogle Scholar
  28. Miller AW, Robyt JF (1986) Inhibition of dextransucrase by Zn2+, Ni2+, Co2+ and tris(hydroxymethyl)aminomethane (Tris). Arch Biochem Biophys 248:579–586CrossRefGoogle Scholar
  29. Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiol Rev 23:131–151Google Scholar
  30. Montville TJ, Cooney CL, Sinskey AJ (1978) Streptococcus mutans dextransucrase: a review. Adv Appl Microbiol 24:55–84CrossRefGoogle Scholar
  31. Monchois V, Remaud-Simeon M, Russell RRB, Monsan P, Willemot R-M (1997) Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48:465–472Google Scholar
  32. Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M (2006) Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 281:31254–31267CrossRefGoogle Scholar
  33. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860CrossRefGoogle Scholar
  34. Olvera C, Centeno-Leija S, Lopez-Munguía A (2007a) Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Antonie van Leeuwenhoek 92:11–20CrossRefGoogle Scholar
  35. Olvera C, Fernandez-Vazquez JL, Ledezma-Candanoza L, Lopez-Munguía A (2007b) Role of the C-terminal region of dextransucrase from Leuconostoc mesenteroides IBT-PQ in cell anchoring. Microbiology 153:3994–4002CrossRefGoogle Scholar
  36. Padmanabhan PA, Kim D-S (2002) Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523. Carbohydr Res 337:1529–1533CrossRefGoogle Scholar
  37. Pearce BJ, Walker GJ, Slodki ME, Schuerch C (1990) Enzymic and methylation analysis of dextrans and (1 → 3)-α-d-glucans. Carbohydr Res 203:229–246CrossRefGoogle Scholar
  38. Purama RK, Agrawal M, Goyal A (2010) Stabilization of dextransucrase from Leuconostoc mesenteroides NRRL B-640. Indian J Microbiol 50(Suppl 1):S57–S61CrossRefGoogle Scholar
  39. Russell RR (1990) Molecular genetics of glucan metabolism in oral streptococci. Arch Oral Biol 35(Suppl):53S–58SCrossRefGoogle Scholar
  40. Seymour FR, Slodki ME, Plattner RD, Jeanes A (1977) Six unusual dextrans: methylation structural analysis by combined GLC-MS of per-O-acetyl-aldononitriles. Carbohydr Res 53:153–166CrossRefGoogle Scholar
  41. Sidebotham RL (1974) Dextrans. Adv Carbohydr Chem Biochem 30:371–444CrossRefGoogle Scholar
  42. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG (2006) Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176CrossRefGoogle Scholar
  43. Vujicic-Zagar A, Pijning T, Kralj S, Lopez CA, Eeuwema W, Dijkhuizen L, Dijkstra BW (2010) Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Nat Acad Sci USA 107:21406–21411CrossRefGoogle Scholar
  44. Yi AR, Lee SR, Jang MU, Park JM, Eom HJ, Han NS, Kim TJ (2009) Cloning of dextransucrase gene from Leuconostoc citreum HJ-P4 and its high-level expression in E. coli by low-temperature induction. J Microbiol Biotechnol 19:829–835Google Scholar
  45. Yokoyama I, Kobayashi M, Matsuda K (1985) Purification of the dimeric form of dextransucrases from Leuconostoc mesenteroides strains NRRL B-1416 and B-1375. Agric Biol Chem 49:1385–1391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  1. 1.Renewable Product Technology Research Unit, National Center for Agricultural Utilization ResearchAgricultural Research Service, United States Department of AgriculturePeoriaUSA

Personalised recommendations