Applied Microbiology and Biotechnology

, Volume 93, Issue 4, pp 1651–1661

Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli

  • Brett A. Boghigian
  • Daniel Salas
  • Parayil Kumaran Ajikumar
  • Gregory Stephanopoulos
  • Blaine A. Pfeifer
Applied microbial and cell physiology

Abstract

Taxa-4(5),11(12)-diene is the first dedicated intermediate in the metabolic pathway responsible for synthesizing the anticancer compound Taxol. In this study, the heterologous production of taxadiene was established in and analyzed between K- and B-derived Escherichia coli strains. First, recombinant parameters associated with precursor metabolism (the upstream methylerythritol phosphate (MEP) pathway) and taxadiene biosynthesis (the downstream pathway) were varied to probe the effect different promoters and cellular backgrounds have on taxadiene production. Specifically, upstream MEP pathway genes responsible for the taxadiene precursors, dimethylallyl diphosphate and isopentenyl diphosphate, were tested with an inducible T7 promoter system within K and B E. coli strains. Whereas, inducible T7, Trc, and T5 promoters were tested with the plasmid-borne geranylgeranyl diphosphate synthase and taxadiene synthase genes responsible for the downstream pathway. The K-derivative produced taxadiene roughly 2.5-fold higher than the B-derivative. A transcriptomics study revealed significant differences in pyruvate metabolism between the K and B strains, providing insight into the differences observed in taxadiene biosynthesis and targets for future metabolic engineering efforts. Next, the effect of temperature on cell growth and taxadiene production was analyzed in these two strains, revealing similar phenotypes between the two with 22°C as the optimal production temperature. Lastly, the effect of indole on cell growth was investigated between the two strains, showing that the K-derivative demonstrated greater growth inhibition compared to the B-derivative.

Keywords

Taxol Taxadiene Taxadiene synthase E. coli Heterologous biosynthesis Metabolic engineering 

References

  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefGoogle Scholar
  2. Alper H, Stephanopoulos G (2008) Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl Microbiol Biotechnol 78:801–810CrossRefGoogle Scholar
  3. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164CrossRefGoogle Scholar
  4. Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616CrossRefGoogle Scholar
  5. Alper H, Miyaoku K, Stephanopoulos G (2006) Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol 72:968–974CrossRefGoogle Scholar
  6. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  7. Boghigian BA, Zhang H, Pfeifer BA (2011) Multi-factorial engineering of heterologous polyketide production in Escherichia coli reveals complex pathway interactions. Biotechnol Bioeng 108:1360–1371CrossRefGoogle Scholar
  8. Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277CrossRefGoogle Scholar
  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefGoogle Scholar
  10. Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) A highly efficient, practical approach to natural taxol. J Am Chem Soc 110:5917–5919CrossRefGoogle Scholar
  11. Dharmadi Y, Gonzalez R (2005) A better global resolution function and a novel iterative stochastic search method for optimization of high-performance liquid chromatographic separation. J Chromatogr A 1070:89–101CrossRefGoogle Scholar
  12. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190CrossRefGoogle Scholar
  13. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61CrossRefGoogle Scholar
  14. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143Google Scholar
  15. Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240CrossRefGoogle Scholar
  16. Hefner J, Ketchum RE, Croteau R (1998) Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys 360:62–74CrossRefGoogle Scholar
  17. Horwitz SB (1994) How to make taxol from scratch. Nature 367:593–594CrossRefGoogle Scholar
  18. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264CrossRefGoogle Scholar
  19. Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci U S A 98:13595–13600CrossRefGoogle Scholar
  20. Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 9:337–347CrossRefGoogle Scholar
  21. Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91:636–642CrossRefGoogle Scholar
  22. Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge EJ, Fortman JL, Johnson HE, Anderson JV, Keasling JD (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71:1466–1473CrossRefGoogle Scholar
  23. Kizer L, Pitera DJ, Pfleger BF, Keasling JD (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74:3229–3241CrossRefGoogle Scholar
  24. Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G (2007) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 25:417–424CrossRefGoogle Scholar
  25. Lau J, Tran C, Licari P, Galazzo J (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli. J Biotechnol 110:95–103CrossRefGoogle Scholar
  26. Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–86CrossRefGoogle Scholar
  27. Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci U S A 107:13654–13659CrossRefGoogle Scholar
  28. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802CrossRefGoogle Scholar
  29. Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6:419–430Google Scholar
  30. Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691CrossRefGoogle Scholar
  31. Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ (1994) Total synthesis of taxol. Nature 367:630–634CrossRefGoogle Scholar
  32. Paradise EM, Kirby J, Chan R, Keasling JD (2008) Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng 100:371–378CrossRefGoogle Scholar
  33. Parekh S, Srinivasan V, Horn M (2008) Bioprocessing using novel cell culture systems. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 63. Elsevier Inc., San Diego, pp 105–143Google Scholar
  34. Phue JN, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30CrossRefGoogle Scholar
  35. Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng 90:805–820CrossRefGoogle Scholar
  36. Phue JN, Lee SJ, Trinh L, Shiloach J (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5alpha). Biotechnol Bioeng 101:831–836CrossRefGoogle Scholar
  37. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207CrossRefGoogle Scholar
  38. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  39. Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395CrossRefGoogle Scholar
  40. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  41. Skeel RT (1999) Handbook of cancer chemotherapy, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  42. Tseng HC, Martin CH, Nielsen DR, Prather KL (2009) Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol 75:3137–3145CrossRefGoogle Scholar
  43. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4:e4489CrossRefGoogle Scholar
  44. Vadali RV, Fu Y, Bennett GN, San KY (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561CrossRefGoogle Scholar
  45. Wang Y, Pfeifer BA (2008) 6-Deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab Eng 10:33–38CrossRefGoogle Scholar
  46. Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204CrossRefGoogle Scholar
  47. Wu J, Boghigian BA, Myint M, Zhang H, Zhang S, Pfeifer BA (2010) Construction and performance of heterologous polyketide-producing K-12- and B-derived Escherichia coli. Lett Appl Microbiol 51:196–204Google Scholar
  48. Yau SY, Keshavarz-Moore E, Ward J (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: Implications for efficient design of large-scale processes. Biotechnol Bioeng 101:529–544CrossRefGoogle Scholar
  49. Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Jung KH, Shin YC, Keasling JD, Kim SW (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032CrossRefGoogle Scholar
  50. Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139CrossRefGoogle Scholar
  51. Yoon KW, Doo EH, Kim SW, Park JB (2008) In situ recovery of lycopene during biosynthesis with recombinant Escherichia coli. J Biotechnol 135:291–294CrossRefGoogle Scholar
  52. Yoon SH, Jeong H, Kwon S-K, Kim JF (2009) Genomics, biological features, and biotechnological applications of Escherichia coli B: “Is B for better?!”. In: Lee SY (ed) Systems biology and biotechnology of Escherichia coli. Springer Science+Business Media B.V, Dordrecht, pp 1–17Google Scholar
  53. Yuan LZ, Rouviere PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Brett A. Boghigian
    • 1
  • Daniel Salas
    • 1
  • Parayil Kumaran Ajikumar
    • 2
  • Gregory Stephanopoulos
    • 2
  • Blaine A. Pfeifer
    • 1
  1. 1.Department of Chemical and Biological Engineering; Science and Technology CenterTufts UniversityMedfordUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations