Applied Microbiology and Biotechnology

, Volume 92, Issue 6, pp 1207–1217

Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae

  • Jay Shockey
  • Dorselyn Chapital
  • Satinder Gidda
  • Catherine Mason
  • Gaynelle Davis
  • K. Thomas Klasson
  • Heping Cao
  • Robert Mullen
  • John Dyer
Applied genetics and molecular biotechnology

Abstract

Saccharomyces cerevisiae is frequently used as a bioreactor for conversion of exogenously acquired metabolites into value-added products, but has not been utilized for bioconversion of low-cost lipids such as triacylglycerols (TAGs) because the cells are typically unable to acquire these lipid substrates from the growth media. To help circumvent this limitation, the Yarrowia lipolytica lipase 2 (LIP2) gene was cloned into S. cerevisiae expression vectors and used to generate S. cerevisiae strains that secrete active Lip2 lipase (Lip2p) enzyme into the growth media. Specifically, LIP2 expression was driven by the S. cerevisiae PEX11 promoter, which maintains basal transgene expression levels in the presence of sugars in the culture medium but is rapidly upregulated by fatty acids. Northern blotting, lipase enzyme activity assays, and gas chromatographic measurements of cellular fatty acid composition after lipid feeding all confirmed that cells transformed with the PEX11 promoter–LIP2 construct were responsive to lipids in the media, i.e., cells expressing LIP2 responded rapidly to either free fatty acids or TAGs and accumulated high levels of the corresponding fatty acids in intracellular lipids. These data provided evidence of the creation of a self-regulating positive control feedback loop that allows the cells to upregulate Lip2p production only when lipids are present in the media. Regulated, autonomous production of extracellular lipase activity is a necessary step towards the generation of yeast strains that can serve as biocatalysts for conversion of low-value lipids to value-added TAGs and other novel lipid products.

Keywords

Saccharomyces cerevisiae Lipase Lipid Bioconversion PEX11 

References

  1. Aloulou A, Rodriguez JA, Puccinelli D, Mouz N, Leclaire J, Leblond Y, Carrière F (2007) Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta 1771:228–237CrossRefGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  3. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510CrossRefGoogle Scholar
  4. Deng L, Tan TW, Wang F, Xu XB (2003) Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99–125. Eur J Lipid Sci Technol 105:727–734CrossRefGoogle Scholar
  5. Dyer JM, McNew JA, Goodman JM (1996) The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J Cell Biol 133:269–280CrossRefGoogle Scholar
  6. Dyer J, Chapital DC, Kuan JW, Mullen RT, Pepperman AB (2002a) Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Appl Microbiol Biotechnol 59:224–230CrossRefGoogle Scholar
  7. Dyer JM, Chapital DC, Kuan J-C, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002b) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038CrossRefGoogle Scholar
  8. Dyer JM, Chapital DC, Kuan J-C W, Shepherd HS, Tang F, Pepperman AB (2004) Production of linolenic acid in yeast cells expressing an omega-3 desaturase from tung (Aleurites fordii). JAOCS 81:647–651CrossRefGoogle Scholar
  9. Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128:509–523CrossRefGoogle Scholar
  10. Færgeman NJ, Black PN, Zhao XD, Knudsen J, DiRusso CC (2001) The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J Biol Chem 276:37051–37059CrossRefGoogle Scholar
  11. Fickers P, Fudalej F, Le Dall MT, Casaregola S, Gaillardin C, Thonart P, Nicaud JM (2005) Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Gen Biol 42:264–274CrossRefGoogle Scholar
  12. Gidda SK, Shockey JM, Falcone M, Kim PK, Rothstein SJ, Andrews DW, Dyer JM, Mullen RT (2011) Hydrophobic-domain-dependent protein–protein interactions mediate the localization of GPAT enzymes to ER subdomains. Traffic 12:452–472CrossRefGoogle Scholar
  13. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert HFJ, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:563–567CrossRefGoogle Scholar
  14. Jacob Z (1993) Yeast lipid biotechnology. Adv Appl Microbiol 39:185–212CrossRefGoogle Scholar
  15. Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K (2006) Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 70:646–653CrossRefGoogle Scholar
  16. Kamisaka Y, Tomita N, Kimura N, Kainou K, Uemura H (2007) DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces cerevisiae. Biochem J 408:61–68CrossRefGoogle Scholar
  17. Kato M, Sato Y, Shirai M, Hayashi R, Balny C, Lange R (2003) The propeptide in the precursor form of carboxypeptidase Y ensures cooperative unfolding and the carbohydrate moiety exerts a protective effect against heat and pressure. Eur J Biochem 270:4587–4593CrossRefGoogle Scholar
  18. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108CrossRefGoogle Scholar
  19. Kimura K, Tomita N, Uemura H, Aki T, Ono K, Kamisaka Y (2009) Improvement of stearidonic acid production in oleaginous Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73:1447–1449CrossRefGoogle Scholar
  20. Leibowitz MJ, Wickner RB (1976) A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 73:2061–2065CrossRefGoogle Scholar
  21. Liu W, Zhao H, Jia B, Xu L, Yan Y (2010) Surface display of active lipase in Saccharomyces cerevisiae using Cwp2 as an anchor protein. Biotechnol Lett 32:255–260CrossRefGoogle Scholar
  22. Marshall PA, Krimkevich YI, Lark RH, Dyer JM, Veenlmis M, Goodman JM (1995) Pmp27 promotes peroxisomal proliferation. J Cell Biol 129:345–355CrossRefGoogle Scholar
  23. McCammon MT, Veenhuis M, Trapp SB, Goodman JM (1990) Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J Bacteriol 172:5816–5827Google Scholar
  24. Metzger JO, Bornscheuer U (2006) Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71:13–22CrossRefGoogle Scholar
  25. Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267:1502–1509Google Scholar
  26. Najjar A, Robert S, Guérin C, Violet-Asther M, Carrière F (2010) Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol 89:1947–1962CrossRefGoogle Scholar
  27. Oliveira DL, Nakayasu ES, Joffe ES, Guimara AJ, Sobreira TJP, Nosanchuk JD, Cordero RJB, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML (2010) Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 5:11113CrossRefGoogle Scholar
  28. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Molec Biol Rev 64:34–50CrossRefGoogle Scholar
  29. Pignéde G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud JM (2000) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182:2802–2810CrossRefGoogle Scholar
  30. Rholam M, Noureddine B, Germain D, Thomas DY, Fahy C, Boussetta H, Boileau G, Cohen P (1995) Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. Eur J Biochem 227:707–714CrossRefGoogle Scholar
  31. Rockwell NC, Krysan DJ, Komiyama T, Fuller RS (2002) Precursor processing by kex2/furin proteases. Chem Rev 102:4525–4548CrossRefGoogle Scholar
  32. Shockey JM, Dhanoa PK, Dupuy T, Chapital DC, Mullen RT, Dyer JM (2005) Cloning, functional analysis, and subcellular localization of two isoforms of NADH:cytochrome b 5 reductase from developing seeds of tung (Vernicia fordii). Plant Sci 169:375–385CrossRefGoogle Scholar
  33. Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313CrossRefGoogle Scholar
  34. Suzuki R, Noguchi R, Ota T, Abe M, Miyashita K, Kawada T (2001) Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids 36:477–482CrossRefGoogle Scholar
  35. Tsuzuki T, Tokuyama Y, Igarashi M, Miyazawa T (2004) Tumor growth suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 25:1417–1425CrossRefGoogle Scholar
  36. Veen M, Lang C (2004) Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63:635–646CrossRefGoogle Scholar
  37. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670Google Scholar
  38. Yu M, Lange S, Richter S, Tianwei T, Schmid RD (2007) High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Prot Expr Purif 53:255–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Jay Shockey
    • 1
  • Dorselyn Chapital
    • 1
  • Satinder Gidda
    • 2
  • Catherine Mason
    • 1
  • Gaynelle Davis
    • 1
  • K. Thomas Klasson
    • 1
  • Heping Cao
    • 1
  • Robert Mullen
    • 2
  • John Dyer
    • 3
  1. 1.United States Department of Agriculture–Agricultural Research ServiceSouthern Regional Research CenterNew OrleansUSA
  2. 2.Department of Molecular and Cellular BiologyUniversity of GuelphGuelphCanada
  3. 3.USDA-ARS, US Arid-Land Agricultural Research CenterMaricopaUSA

Personalised recommendations