LAMP-based method for a rapid identification of Legionella spp. and Legionella pneumophila

  • Xi Lu
  • Zi-Yao MoEmail author
  • Hong-Bo Zhao
  • He Yan
  • Lei Shi
Methods and Protocols


Legionella pneumophila is accounted for more than 80% of Legionella infection. However it is difficult to discriminate between the L. pneumophila and non-L. pneumophila species rapidly. In order to detect the Legionella spp. and distinguish L. pneumophila from Legionella spp., a real-time loop-mediated isothermal amplification (LAMP) platform that targets a specific sequence of the 16S rRNA gene was developed. LS-LAMP amplifies the fragment of the 16S rRNA gene to detect all species of Legionella genus. A specific sequence appears at the 16S rRNA gene of L. pneumophila, while non-L. pneumophila strains have a variable sequence in this site, which can be recognized by the primer of LP-LAMP. In the present study, 61 reference strains were used for the method verification. We found that the specificity was 100% for both LS-LAMP and LP-LAMP, and the sensitivity of LAMP assay for L. pneumophila detection was between 52 and 5.2 copies per reaction. In the environmental water samples detection, a total of 107 water samples were identified by the method. The culture and serological test were used as reference methods. The specificity of LS-LAMP and LP-LAMP for the samples detection were 91.59% (98/107) and 93.33% (56/60), respectively. The sensitivity of LS-LAMP and LP-LAMP were 100% (51/51) and 100% (18/18). The results suggest that real-time LAMP, as a new assay, provides a specific and sensitive method for rapid detection and differentiation of Legionella spp. and L. pneumophila and should be utilized to test environmental water samples for increased rates of detection.


Loop-mediated isothermal amplification Legionella pneumophila Different diagnosis 



The project was funded by the Science and Technology Development Fund of Macao (039/2007/A3), the National Natural Science Foundation of China (20877028), and the State Key Laboratory of Respiratory Diseases (2007DA780154F0904).

We also thank Qing-Yi Zhu from the Guangzhou Kingmed Center for Clinical Laboratory for providing the DNA or strains of L. pneumophila and non-L. pneumophila.


  1. Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila—a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64(4):432–448. doi: 10.1007/s00018-006-6391-1 CrossRefGoogle Scholar
  2. Aurell H, Catala P, Farge P, Wallet F, Le Brun M, Helbig JH, Jarraud S, Lebaron P (2004) Rapid detection and enumeration of Legionella pneumophila in hot water systems by solid-phase cytometry. Appl Environ Microbiol 70(3):1651–1657. doi: 10.1128/aem.70.3.1651-1657.2004 CrossRefGoogle Scholar
  3. Bonizzoni M, Afrane Y, Yan G (2009) Loop-mediated isothermal amplification (LAMP) for rapid identification of Anopheles gambiae and Anopheles arabiensis mosquitoes. Am J Trop Med Hyg 81(6):1030–1034. doi: 10.4269/ajtmh.2009.09-0333 CrossRefGoogle Scholar
  4. Cloud JL, Carroll KC, Pixton P, Erali M, Hillyard DR (2000) Detection of Legionella species in respiratory specimens using PCR with sequencing confirmation. J Clin Microbiol 38(5):1709–1712Google Scholar
  5. Costa J, Tiago I, da Costa MS, Verissimo A (2005) Presence and persistence of Legionella spp. in groundwater. Appl Environ Microbiol 71(2):663–671. doi: 10.1128/aem.71.2.663-671.2005 CrossRefGoogle Scholar
  6. Diederen BMW (2008) Legionella spp. and Legionnaires' disease. J Infect 56(1):1–12CrossRefGoogle Scholar
  7. Diogo A, Verissimo A, Nobre MF, da Costa MS (1999) Usefulness of fatty acid composition for differentiation of Legionella species. J Clin Microbiol 37(7):2248–2254Google Scholar
  8. Dusserre E, Ginevra C, Hallier-Soulier S, Vandenesch F, Festoc G, Etienne J, Jarraud S, Molmeret M (2008) A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability. Appl Environ Microbiol 74(15):4817–4824. doi: 10.1128/aem.02899-07 CrossRefGoogle Scholar
  9. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15(3):506–526. doi: 10.1128/cmr.15.3.506-526.2002 CrossRefGoogle Scholar
  10. Gobin I, Newton PR, Hartland EL, Newton HJ (2009) Infections caused by nonpneumophila species of Legionella. Rev Med Microbiol 20(1):1Google Scholar
  11. Hayashi N, Arai R, Tada S, Taguchi H, Ogawa Y (2007) Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method. Food Microbiol 24(7–8):778–785CrossRefGoogle Scholar
  12. Herwaldt LA, Gorman GW, McGrath T, Toma S, Brake B, Hightower AW, Jones J, Reingold AL, Boxer PA, Tang PW, Moss CW, Wilkinson H, Brenner DJ, Steigerwalt AG, Broome CV (1984) A new Legionella species, Legionella feeleii species nova, causes Pontiac fever in an automobile plant. Ann Intern Med 100(3):333–338. doi: 10.1059/0003-4819-100-3-333 Google Scholar
  13. Hilbi H, Jarraud S, Hartland E, Buchrieser C (2010) Update on Legionnaires' disease: pathogenesis, epidemiology, detection and control. Mol Microbiol 76(1):1–11CrossRefGoogle Scholar
  14. Inacio J, Flores O, Spencer-Martins I (2008) Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J Clin Microbiol 46(2):713–720. doi: 10.1128/jcm.00514-07 CrossRefGoogle Scholar
  15. Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41(6):2616–2622CrossRefGoogle Scholar
  16. Mo Z-Y, Qin J-Q, Zhao H-B, Guan W-D, Qin S, Wang Y-T, Yang Z-F (2011) Single and duplex fluorescence quantitative PCR for rapid detection of Legionella. Chin J Biomed Eng 17(1):60–64Google Scholar
  17. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289(1):150–154CrossRefGoogle Scholar
  18. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63. doi: 10.1093/nar/28.12.e63 CrossRefGoogle Scholar
  19. Ohori A, Endo S, Sano A, Yokoyama K, Yarita K, Yamaguchi M, Kamei K, Miyaji M, Nishimura K (2006) Rapid identification of Ochroconis gallopava by a loop-mediated isothermal amplification (LAMP) method. Vet Microbiol 114(3–4):359–365CrossRefGoogle Scholar
  20. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43(1):93–100Google Scholar
  21. Ratcliff RM, Lanser JA, Manning PA, Heuzenroeder MW (1998) Sequence-based classification scheme for the genus Legionella targeting the mip gene. J Clin Microbiol 36(6):1560–1567Google Scholar
  22. Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33(12):1179CrossRefGoogle Scholar
  23. Siyi C, Beilei G (2010) Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol 10(41):1471–2180Google Scholar
  24. Steinert M, Heuner K, Buchrieser C, Albert-Weissenberger C, Glkner G (2007) Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297(7–8):577–587CrossRefGoogle Scholar
  25. Stolhaug A, Bergh K (2006) Identification and differentiation of Legionella pneumophila and Legionella spp. with real-time PCR targeting the 16S rRNA gene and species identification by mip sequencing. Appl Environ Microbiol 72(9):6394–6398. doi: 10.1128/aem.02839-05 CrossRefGoogle Scholar
  26. Wang L, Li L, Alam M, Geng Y, Li Z, Yamasaki S, Shi L (2008) Loop-mediated isothermal amplification method for rapid detection of the toxic dinoflagellate Alexandrium, which causes algal blooms and poisoning of shellfish. FEMS Microbiol Lett 282(1):15–21CrossRefGoogle Scholar
  27. Wilson DA, Reischl U, Hall GS, Procop GW (2007) Use of partial 16S rRNA gene sequencing for identification of Legionella pneumophila and non-pneumophila Legionella spp. J Clin Microbiol 45(1):257–258. doi: 10.1128/jcm.01552-06 CrossRefGoogle Scholar
  28. Yanez MA, Carrasco-Serrano C, Barbera VM, Catalan V (2005) Quantitative detection of Legionella pneumophila in water samples by immunomagnetic purification and real-time PCR amplification of the dotA gene. Appl Environ Microbiol 71(7):3433–3441. doi: 10.1128/aem.71.7.3433-3441.2005 CrossRefGoogle Scholar
  29. Yaradou DF, Hallier-Soulier S, Moreau S, Poty F, Hillion Y, Reyrolle M, Andre J, Festoc G, Delabre K, Vandenesch F (2007) Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems. Appl Environ Microbiol 73(5):1452CrossRefGoogle Scholar
  30. Zhan X-Y, Li L-Q, Hu C-H, Zhu Q-Y (2010) Two-step scheme for rapid identification and differentiation of Legionella pneumophila and non-Legionella pneumophila species. J Clin Microbiol 48(2):433–439. doi: 10.1128/jcm.01778-09 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xi Lu
    • 1
  • Zi-Yao Mo
    • 2
    Email author
  • Hong-Bo Zhao
    • 2
  • He Yan
    • 1
  • Lei Shi
    • 1
  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina
  2. 2.The State Key Laboratory of Respiratory DiseasesGuangzhou Medical UniversityGuangzhouChina

Personalised recommendations