Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil

  • Laura R. JarboeEmail author
  • Zhiyou Wen
  • DongWon Choi
  • Robert C. Brown


Thermochemical processing of biomass by fast pyrolysis provides a nonenzymatic route for depolymerization of biomass into sugars that can be used for the biological production of fuels and chemicals. Fermentative utilization of this bio-oil faces two formidable challenges. First is the fact that most bio-oil-associated sugars are present in the anhydrous form. Metabolic engineering has enabled utilization of the main anhydrosugar, levoglucosan, in workhorse biocatalysts. The second challenge is the fact that bio-oil is rich in microbial inhibitors. Collection of bio-oil in distinct fractions, detoxification of bio-oil prior to fermentation, and increased robustness of the biocatalyst have all proven effective methods for addressing this inhibition.


Levoglucosan Bio-oil Ethanol Lipids Inhibition Toxicity Furfural Acetic acid 


  1. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Technoeconomic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89(1):S29–S35CrossRefGoogle Scholar
  2. Blackwell P, Riethmuller G, Collins M (2009) Biochar application in soil. In: Lehmann J, Earthscan JS (eds) Biochar for environmental management: science and technology. Earthscan, LondonGoogle Scholar
  3. Chan JKS, Duff SJB (2010) Methods for mitigation of bio-oil extract toxicity. Bioresour Technol 101(10):3755–3759. doi: 10.1016/j.biortech.2009.12.054 CrossRefGoogle Scholar
  4. Couallier EM, Payot T, Bertin AP, Lameloise ML (2006) Recycling of distillery effluents in alcoholic fermentation—role in inhibition of 10 organic molecules. Appl Biochem Biotechnol 133(3):217–237CrossRefGoogle Scholar
  5. Dai JH, Yu ZS, He YZ, Zhang L, Bai ZH, Dong ZY, Du YG, Zhang HX (2009) Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli. World J Microbiol Biotechnol 25(9):1589–1595. doi: 10.1007/s11274-009-0048-9 CrossRefGoogle Scholar
  6. Demirbas MF, Balat M (2007) Biomass pyrolysis for liquid fuels and chemicals: a review. J Sci Ind Res 66:797–804Google Scholar
  7. Kitamura Y, Yasui T (1991) Assimilation of levoglucosan (1,6-anhydro-beta-d-glucopyranose) by several yeasts. Hakkokogaku Kaishi J Soc Ferment Technol 69(5):373–378Google Scholar
  8. Kitamura Y, Abe Y, Yasui T (1991) Metabolism of levoglucosan (1-6-anhydro-beta-d-glucopyranose) in microorganisms. Agric Biol Chem 55(2):515–521CrossRefGoogle Scholar
  9. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioproducts Biorefining 3(5):547–562. doi: 10.1002/bbb.169 CrossRefGoogle Scholar
  10. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol. doi: 10.1016/j.biortech.2011.06.011
  11. Lian JN, Chen SL, Zhou SA, Wang ZH, O'Fallon J, Li CZ, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101(24):9688–9699. doi: 10.1016/j.biortech.2010.07.071 CrossRefGoogle Scholar
  12. Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO (2009a) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75(19):6132–6141. doi: 10.1128/aem.01187-09 CrossRefGoogle Scholar
  13. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009b) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–4323. doi: 10.1128/aem.00567-09 CrossRefGoogle Scholar
  14. Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32(5):661–667. doi: 10.1007/s10529-010-0209-9 CrossRefGoogle Scholar
  15. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101(13):5013–5022. doi: 10.1016/j.biortech.2009.12.098 CrossRefGoogle Scholar
  16. Nakagawa M, Sakai Y, Yasui T (1984) Itaconic acid fermentation of levoglucosan. J Ferment Technol 62:201–203Google Scholar
  17. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol 86(2):323–330. doi: 10.1016/j.jaap.2009.08.007 CrossRefGoogle Scholar
  18. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101(12):4646–4655. doi: 10.1016/j.biortech.2010.01.112 CrossRefGoogle Scholar
  19. Pollard A, Rover MR, Jones ST, Brown RC (2011) Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. Bioresour Technol (in press)Google Scholar
  20. Prosen EM, Radlein D, Piskorz J, Scott DS, Legge RL (1993) Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng 42(4):538–541CrossRefGoogle Scholar
  21. Scott DS, Czernik S, Piskorz J, Radlein D (1989) Sugars from biomass cellulose by a thermal conversion process. In: Klass DL (ed) Energy from biomass and wastes, vol 13. vol 1. Institute of Gas Technology, Chicago, pp 1349–1360Google Scholar
  22. So K, Brown RC (1999) Economic analysis of selected lignocellulose-to-ethanol conversion technologies. Appl Biochem Biotechnol 77:633–640CrossRefGoogle Scholar
  23. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87(2):169–174CrossRefGoogle Scholar
  24. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708CrossRefGoogle Scholar
  25. Venderbosch RH, Prins W (2011) Fast pyrolysis. In: Brown RC (ed) Thermochemical processing of biomass. Wiley, LondonGoogle Scholar
  26. Westerhof RJM, Brilman DMF, Garcia-Perez M, Wang Z, Oudenhoven SRG, van Swaaij WPM, Kersten SRA (2011) Fractional condensation of biomass pyrolysis vapors. Energ Fuel 25(4):1817–1829CrossRefGoogle Scholar
  27. Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66(4):203–210CrossRefGoogle Scholar
  28. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33CrossRefGoogle Scholar
  29. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68(5):524–530CrossRefGoogle Scholar
  30. Zhuang X, Zhang H (2002) Identification, characterization of levoglucosan kinase, and cloning and expression of levoglucosan kinase cDNA from Aspergillus niger CBX-209 in Escherichia coli. Protein Expr Purif 26(1):71–81CrossRefGoogle Scholar
  31. Zhuang XL, Zhang HX, Yang JZ, Qi HY (2001) Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol 79(1):63–66CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Laura R. Jarboe
    • 1
    Email author
  • Zhiyou Wen
    • 2
  • DongWon Choi
    • 3
  • Robert C. Brown
    • 4
  1. 1.Chemical and Biological EngineeringIowa State UniversityAmesUSA
  2. 2.Food Science and Human NutritionIowa State UniversityAmesUSA
  3. 3.Biological and Environmental SciencesTexas A&M University—CommerceCommerceUSA
  4. 4.Mechanical EngineeringIowa State UniversityAmesUSA

Personalised recommendations