Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 4, pp 1755–1767 | Cite as

Biological activity and mechanical stability of sol–gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber

  • Angela Pannier
  • Martin Mkandawire
  • Ulrich Soltmann
  • Wolfgang Pompe
  • Horst Böttcher
Environmental biotechnology

Abstract

Biofilters with long lifetime and high storage stability are very important for bioremediation processes to ensure the readiness at the occurrence of sudden contaminations. By using the freeze-gelation technique, living cells can be immobilized within a mechanically and chemically stable ceramic-like matrix. Due to a freeze-drying step, the embedded microorganisms are converted into a preserved form. In that way, they can be stored under dry conditions, which comply better with storage, transport, and handling requirements. Thus, in contrast to other immobilization techniques, there is no need for storage in liquid or under humid atmosphere. The biological activity, mechanical strength, and the structure of the biologically active ceramic-like composites (biocers) produced by freeze gelation have been investigated by using the phenol-degrading bacteria Rhodococcus ruber as model organism. Samples of freeze-gelation biocers have been investigated after defined storage periods, demonstrating nearly unchanged mechanical strength of the immobilization matrix as well as good storage stability of the activity of the immobilized cells over several months of storage at 4 °C. Repeated-batch tests demonstrated further that the freeze-gelation biocers can be repeatedly used over a period of more than 12 months without losing its bioactivity. Thus, these results show that freeze-gelation biocers have high potential of being scaled up from laboratory test systems to applications in real environment because of their long bioactivity as well as mechanical stability.

Keywords

Freeze cast Phenol degradation Bioremediation Cell encapsulation Compressive strength Tension strength 

Notes

Acknowledgments

This work was done under the framework of German Federal Ministry of Education and Research (BMBF) Collaborative Project Grant No. 02WR0696 (Code: NANOKAT). Thus, the authors acknowledge contributions from all project partners. Some SEM micrographs were done by Dr. Sabine Matys. Mechanical tests were done at the Material Testing Laboratory under the direction of Dr. Brigit Vetter and technical assistance from Dip. Ing. Ruth Bläsner. Mr. Jochen Förster provided all other technical support during the study.

References

  1. Ahamad AP, Kunhi MA (2011) Enhanced degradation of phenol Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22:253–265CrossRefGoogle Scholar
  2. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  3. Bell KS, Philp JC, Aw DWJ, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210CrossRefGoogle Scholar
  4. Bettmann H, Rehm HJ (1984) Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol 20:285–290CrossRefGoogle Scholar
  5. Böttcher H, Soltmann U, Mertig M, Pompe W (2004) Biocers: ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J Mater Chem 14:2176–2188CrossRefGoogle Scholar
  6. Brányik T, Kuncová G, Páca J (2000) The use of silica gel prepared by sol–gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol. Appl Microbiol Biotechnol 54(2):168–172CrossRefGoogle Scholar
  7. Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol Biotechnol 16:79–101Google Scholar
  8. Chernev G, Rangelova N, Djambazki P, Nenkova S, Salvado I, Fernandes M, Wu A, Kabaivanova L (2011) Sol–gel silica hybrid biomaterials for application in biodegradation of toxic compounds. J Sol-Gel Sci Technol 58(3):619–624CrossRefGoogle Scholar
  9. Coiffier A, Coradin T, Roux C, Bouvet OMM, Livage J (2001) Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chemoistry 11:2039–2044CrossRefGoogle Scholar
  10. Coradin T, Boissiere M, Livage J (2006) Sol–gel chemistry in medicinal science. Curr Med Chem 13(1):99–108CrossRefGoogle Scholar
  11. Coradin T, Amoura M, Roux C, Livage J, Flickinger MC (2009) Biocers, industrial applications. In: Encyclopedia of industrial biotechnology. Wiley, New YorkGoogle Scholar
  12. de Carvalho CCCR, da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726CrossRefGoogle Scholar
  13. Depagne C, Roux C, Coradin T (2010) How to design cell-based biosensors using the sol–gel process. Anal Bioanal Chem 400(4):965–976CrossRefGoogle Scholar
  14. Deville S (2010) Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials 3(3):1913–1927CrossRefGoogle Scholar
  15. Fiedler D, Thron A, Soltmann U, Böttcher H (2004) New packing materials for bioreactors based on coated and fiber-reinforced biocers. Chem Mater 16:3040–3044CrossRefGoogle Scholar
  16. Gadre SY, Gouma PI (2006) Biodoped ceramics: synthesis, properties, and applications. J Am Ceram Soc 89(10):2987–3002CrossRefGoogle Scholar
  17. Kabaivanova LV, Chernev GE, Salvado IMM, Fernandes MHV (2011) Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates. Cent Eur J Chem 9(2):232–239CrossRefGoogle Scholar
  18. Keweloh H, Heipieper H, Rehm H (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31:383–389CrossRefGoogle Scholar
  19. Koch D, Andresen L, Schmedders T, Grathwohl G (2003) Evolution of porosity by freeze casting and sintering of sol–gel derived ceramics. J Sol-Gel Sci Technol 26(1):149–152CrossRefGoogle Scholar
  20. Koch D, Soltmann C, Grathwohl G (2007) Bioactive ceramics—new processing technologies for immobilization of microorganisms for filtration and bioreactor applications. Key Eng Mater 336–338:1683–1687CrossRefGoogle Scholar
  21. Kuncova G, Podrazky O, Ripp S, Trögl J, Sayler GS, Demnerova K, Vankova R (2004) Monitoring of the viability of cells immobilized by sol–gel process. J Sol-Gel Sci Technol 31:335–342CrossRefGoogle Scholar
  22. Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrine colorimetric method for phenols. Application to acrylic monomer. Anal Chem 31(7):1246–1249CrossRefGoogle Scholar
  23. Liu YJ, Zhang AN, Wang XC (2009) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem Eng J 44:187–192CrossRefGoogle Scholar
  24. Marrot B, Barrios-Martinez A, Moulin P, Roche N (2006) Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J 30:174–183CrossRefGoogle Scholar
  25. Maxwell WA, Gurnick RS, Francisco AC (1954) Preliminary investigation of the freeze-casting method for forming refractory powders. NACA Res Memo E53L21:1–19Google Scholar
  26. Meunier CF, Dandoy P, Su B-L (2010) Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci 342(2):211–224CrossRefGoogle Scholar
  27. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  28. Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32CrossRefGoogle Scholar
  29. Mkandawire M, Förster J, Fiedler D, Böttcher H, Pompe W (2009) Spectrophotometric verification of biodegradation of phenol in a flow dynamic biocers-based bioreactor system. Int J Environ Anal Chem 89(7):529–541CrossRefGoogle Scholar
  30. Moritz T, Richter H-J (2006) Ceramic bodies with complex geometries and ceramic shells by freeze casting using ice as mold material. J Am Ceram Soc 89(8):2394–2398CrossRefGoogle Scholar
  31. Munch E, Saiz E, Tomsia AP, Deville S (2009) Architectural control of freeze-cast ceramics through additives and templating. J Am Ceram Soc 92(7):1534–1539CrossRefGoogle Scholar
  32. Nassif N, Bouvet O, Noelle Rager M, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nat Mater 1:42–44CrossRefGoogle Scholar
  33. Pannier A, Oehm C, Fischer AR, Werner P, Soltmann U, Böttcher H (2010) Biodegradation of fuel oxygenates by sol–gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzym Microb Technol 47(6):291–296CrossRefGoogle Scholar
  34. Perullini M, Jobbagy M, Mouso N, Forchiassin F, Bilmes SA (2010) Silica-alginate-fungi biocomposites for remediation of polluted water. J Mater Chem 20(31):6479–6483CrossRefGoogle Scholar
  35. Perullini M, Amoura M, Roux C, Coradin T, Livage J, Japas ML, Jobbagy M, Bilmes SA (2011) Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J Mater Chem 21:4546–4552CrossRefGoogle Scholar
  36. Premkumar JR, Sagi E, Rozen R, Belkin S, Modestov AD, Lev O (2002) Fluorescent bacteria encapsulated in sol–gel derived silicate films. Chem Mater 14:2676–2686CrossRefGoogle Scholar
  37. Prieto, Hidalgo, Rodríguez-Fernández, Serra, Llama (2002) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–860CrossRefGoogle Scholar
  38. Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244CrossRefGoogle Scholar
  39. Ramachandran S, Coradin T, Jain P, Verma S (2009) Nostoc calcicola immobilized in silica-coated calcium alginate and silica gel for applications in heavy metal biosorption. SILICON 1(4):215–223CrossRefGoogle Scholar
  40. Schlegel HG, Kaltwasser H, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38:209–222CrossRefGoogle Scholar
  41. Smith DM, Scherer GW, Anderson JM (1995) Shrinkage during drying of silica gel. J Non-Crystalline Solids 188(3):191–206CrossRefGoogle Scholar
  42. Sofie SW, Dogan F (2001) Freeze casting of aqueous alumina slurries with glycerol. J Am Ceram Soc 84(7):1459–1464CrossRefGoogle Scholar
  43. Soltmann U, Böttcher H (2008) Utilization of sol–gel ceramics for the immobilization of living microorganisms. J Sol-Gel Sci Technol 48(1):66–72CrossRefGoogle Scholar
  44. Soltmann U, Böttcher H, Koch D, Grathwohl G (2003) Freeze gelation: a new option for the production of biological ceramic composites (biocers). Mater Lett 57:2861–2865CrossRefGoogle Scholar
  45. Soltmann U, Matys S, Kieszig G, Pompe W, Böttcher H (2010) Algae-silica hybrid materials for biosorption of heavy metals. J Water Resour Prot 2(2):115–122CrossRefGoogle Scholar
  46. Tessema DA, Rosen R, Pedazur R, Belkin S, Gun J, Ekeltchik I, Lev O (2006) Freeze-drying of sol–gel encapsulated recombinant bioluminescent E. coli by using lyo-protectants. Sens Actuators B: Chem 113(2):768–773CrossRefGoogle Scholar
  47. Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73CrossRefGoogle Scholar
  48. Zhou L, Li G, An T, Fu J, Sheng G (2008) Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Pat Eng 2:28–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Angela Pannier
    • 1
  • Martin Mkandawire
    • 2
  • Ulrich Soltmann
    • 1
  • Wolfgang Pompe
    • 2
  • Horst Böttcher
    • 1
  1. 1.Department of Functional CoatingsGMBU e.V.DresdenGermany
  2. 2.Dresden University of Technology, Institute of Materials ScienceDresdenGermany

Personalised recommendations