Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

  • Tinghong Chang
  • Shuo Yao


Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.


Thermophilic bacteria Cellulolytic and hemicellulolytic enzymes Ethanol production 


  1. Aduseopoku J, Mitchell WJ (1988) Diauxic growth of Clostridium thermosaccharolyticum on glucose and xylose. FEMS Microbiol Lett 50:45–49CrossRefGoogle Scholar
  2. Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113CrossRefGoogle Scholar
  3. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82:340–349CrossRefGoogle Scholar
  4. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66CrossRefGoogle Scholar
  5. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRefGoogle Scholar
  6. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554CrossRefGoogle Scholar
  7. Benbassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria—metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199Google Scholar
  8. Bollok M, Reczey K, Zacchi G (2000) Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Appl Biochem Biotechnol 84–6:69–80CrossRefGoogle Scholar
  9. Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874CrossRefGoogle Scholar
  10. Bringermeyer S, Schimz KL, Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis—isolation and partial characterization. Arch Microbiol 146:105–110CrossRefGoogle Scholar
  11. Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary alcohol dehydrogenase (2o Adh) as a bifunctional alcohol dehydrogenase acetyl-CoA reductive thioesterase. Biochem J 302:163–170Google Scholar
  12. Carere CR, Kalia V, Sparling R, Cicek N, Levin DB (2008) Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Indian J Microbiol 48:252–266CrossRefGoogle Scholar
  13. Carreira LH, Ljungdahl LG (1983) High ethanol producing derivatives of Thermoanaerobacter ethanolicus. Abstr Annu Meet Am Soc Microbiol 83:O4Google Scholar
  14. Cayol JL, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD, Garcia JL (1995) Description of Thermoanaerobacter brockii subsp. Lactiethylicus subsp. nov, isolated from a deep subsurface French oil-well, a proposal to reclassify Thermoanaerobacter finii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789CrossRefGoogle Scholar
  15. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234CrossRefGoogle Scholar
  16. Cook GM, Janssen PH, Morgan HW (1993) Uncoupler resistant glucose uptake by the thermophilic glycolytic anaerobe Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum). Appl Environ Microbiol 59:2984–2990Google Scholar
  17. Cook GM, Janssen PH, Russell JB, Morgan HW (1994) Dual mechanisms of xylose uptake in the thermophilic bacterium Thermoanaerobacter thermohydrosulfuricus. FEMS Microbiol Lett 116:257–262CrossRefGoogle Scholar
  18. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408CrossRefGoogle Scholar
  19. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154CrossRefGoogle Scholar
  20. Desai SG, Guerinot ML, Lynd LR (2004) Cloning of l-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 65:600–605CrossRefGoogle Scholar
  21. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRefGoogle Scholar
  22. Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y (2003a) Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol 185:3042–3048CrossRefGoogle Scholar
  23. Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2003b) Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J Bacteriol 185:5109–5116CrossRefGoogle Scholar
  24. Erbeznik M, Dawson KA, Strobel HJ (1998a) Cloning and characterization of transcription of the xylAB operon in Thermoanaerobacter ethanolicus. J Bacteriol 180:1103–1109Google Scholar
  25. Erbeznik M, Ray M, Dawson KA, Strobel HJ (1998b) Xylose transport by the anaerobic thermophile Thermoanaerobacter ethanolicus and the characterization of a d-xylose-binding protein. Curr Microbiol 37:295–300CrossRefGoogle Scholar
  26. Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New YorkGoogle Scholar
  27. Freier D, Mothershed CP, Wiegel J (1988) Characterization of Clostridium thermocellum Jw20. Appl Environ Microbiol 54:204–211Google Scholar
  28. Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68CrossRefGoogle Scholar
  29. Georgieva TI, Mikkelsen MJ, Ahring BK (2007) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2:364–377CrossRefGoogle Scholar
  30. Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110CrossRefGoogle Scholar
  31. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  32. Hartley BS, Shama G (1987) Novel ethanol fermentations fromsugarcane and straw. Phil Trans R Soc Lond A 321:555–568CrossRefGoogle Scholar
  33. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  34. Herrero AA, Gomez RF, Roberts MF (1982) Ethanol induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim Biophys Acta 693:195–204CrossRefGoogle Scholar
  35. Herrero AA, Gomez RF, Roberts MF (1985) 31P NMR studies of Clostridium thermocellum—mechanism of end product inhibition by ethanol. J Biol Chem 260:7442–7451Google Scholar
  36. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214CrossRefGoogle Scholar
  37. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261Google Scholar
  38. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326CrossRefGoogle Scholar
  39. Jones CR, Ray M, Dawson KA, Strobel HJ (2000) High affinity maltose binding and transport by the thermophilic anaerobe Thermoanaerobacter ethanolicus 39E. Appl Environ Microbiol 66:995–1000CrossRefGoogle Scholar
  40. Jungerma K, Thauer RK, Leimenst G, Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta 305:268–280CrossRefGoogle Scholar
  41. Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, Borovok I, Lamed R (2010) The unique set of putative membrane-associated anti-Sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 308:84–93CrossRefGoogle Scholar
  42. Khan AW, Asther M, Giuliano C (1984) Utilization of steam decompressed and explosion decompressed aspen wood by some anaerobes. J Biosci Bioeng 62:335–339Google Scholar
  43. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRefGoogle Scholar
  44. Kormelink FJM, Voragen AGJ (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695CrossRefGoogle Scholar
  45. Krishna SH, Reddy TJ, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77:193–196CrossRefGoogle Scholar
  46. Lamed R, Zeikus JG (1980a) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257Google Scholar
  47. Lamed R, Zeikus JG (1980b) Ethanol production by thermophilic bacteria—relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144:569–578Google Scholar
  48. Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp nov, an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119CrossRefGoogle Scholar
  49. Lee YE, Jain MK, Lee CY, Lowe SE, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes—description of Thermoanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoanaerobacterium saccharolyticum gen-nov, sp-nov—reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb-nov, Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaerobacter thermohydrosulfuricus comb-nov, respectively—and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51CrossRefGoogle Scholar
  50. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563CrossRefGoogle Scholar
  51. Liang CN, Xue YF, Fioroni M, Rodriguez-Ropero F, Zhou C, Schwaneberg U, Ma YH (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–326CrossRefGoogle Scholar
  52. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  53. Lovitt RW, Longin R, Zeikus JG (1984) Ethanol production by thermophilic bacteria—physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl Environ Microbiol 48:171–177Google Scholar
  54. Lovitt RW, Kim BH, Shen G-J, Zeikus JG (1988a) Solvent production by microorganisms. Crit Rev Biotechnol 7:107–186CrossRefGoogle Scholar
  55. Lovitt RW, Shen GJ, Zeikus JG (1988b) Ethanol production by thermophilic bacteria—biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–2815Google Scholar
  56. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465CrossRefGoogle Scholar
  57. Lynd LR, Ahn HJ, Anderson G, Hill P, Kersey DS, Klapatch T (1991a) Thermophilic ethanol production—investigation of ethanol yield and tolerance in continuous culture. Appl Biochem Biotechnol 28–9:549–570CrossRefGoogle Scholar
  58. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991b) Fuel rthanol from cellulosic biomass. Sci 251:1318–1323CrossRefGoogle Scholar
  59. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  60. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583CrossRefGoogle Scholar
  61. Lynd R, Currie D, Ciazza N, Herring C, Orem N (2008) Consolidated bioprocessing of cellulosic biomass to ethanol using thermophilic bacteria. Bioenergy. ASM, Washington, pp 55–73Google Scholar
  62. Mai V, Wiegel J (2000) Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl Environ Microbiol 66:4817–4821CrossRefGoogle Scholar
  63. Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148:163–167CrossRefGoogle Scholar
  64. Mcbee RH (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67:505–506Google Scholar
  65. Mikkelsen MJ, Ahring BK, Georgieva TI (2007) New Thermoanaerobacter mathranii strain selected from BG1 (DSMZ Accession number 18280) or mutants, useful for producing fermentation products, e.g. acid, alcohol, ketone, or hydrogen. BIOGASOL IPR, A. P. S. [WO2007134607-A1; EP2035543-A1; AU2007252104-A1; CA2652451-A1; CN101490242-A; IN200804701-P2; MX2008014733-A1; JP2009537156-W; US2010143988-A1; ZA200809878-A; MX280423-B]Google Scholar
  66. Mishra S, Beguin P, Aubert JP (1991) Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J Bacteriol 173:80–85Google Scholar
  67. Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130CrossRefGoogle Scholar
  68. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  69. Mussatto SI, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830CrossRefGoogle Scholar
  70. Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci U S A 107:18646–18651CrossRefGoogle Scholar
  71. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp nov and Geobacillus uzenensis sp nov from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Intl J Syst Evol Microbiol 51:433–446Google Scholar
  72. Ng TK, Zeikus JG (1982) Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J Bacteriol 150:1391–1399Google Scholar
  73. Ng TK, Benbassat A, Zeikus JG (1981) Ethanol production by thermophilic bacteria—fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41:1337–1343Google Scholar
  74. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27CrossRefGoogle Scholar
  75. Nochur SV, Jacobson GR, Roberts MF, Demain AL (1992) Mode of sugar phosphorylation in Clostridium thermocellum. Appl Biochem Biotechnol 33:33–41CrossRefGoogle Scholar
  76. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50CrossRefGoogle Scholar
  77. Palmqvist E, Hahn-Hagerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  78. Palmqvist E, Hahn-Hagerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  79. Payton MA (1984) Production of ethanol by thermophilic bacteria. Trends Biotechnol 2:153–158CrossRefGoogle Scholar
  80. Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41:846–853CrossRefGoogle Scholar
  81. Pronk JT, Steensma HY, vanDijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633CrossRefGoogle Scholar
  82. Rainey FA, Ward NL, Morgan HW, Toalster R, Stackebrandt E (1993) Phylogenetic analysis of anaerobic thermophilic bacteria—aid for their reclassification. J Bacteriol 175:4772–4779Google Scholar
  83. Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv Appl Microbiol 31:1–60CrossRefGoogle Scholar
  84. Sabathe F, Belaich A, Soucaille P (2002) Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 217:15–22CrossRefGoogle Scholar
  85. Saddler JN, Chan MKH (1984) Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermocellum in mono-culture and co-culture with Clostridium thermosaccharolyticum and Clostridium thermohydrosulphuricum. Can J Microbiol 30:212–220CrossRefGoogle Scholar
  86. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  87. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453CrossRefGoogle Scholar
  88. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc Biochem 40:3693–3700CrossRefGoogle Scholar
  89. Sahm K, Matuschek M, Müller H, Mitchell WJ, Bahl H (1996) Molecular analysis of the amy gene locus of Thermoanaerobacterium thermosulfurigenes EM1 encoding starch-degrading enzymes and a binding protein-dependent maltose transport system. J Bacteriol 178:1039–1046Google Scholar
  90. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649CrossRefGoogle Scholar
  91. Shao WL, Obi SKC, Puls J, Wiegel J (1995) Purification and characterization of the alpha-glucuronidase from Thermoanaerobacterium Sp. Strain JW/Sl-YS485, an important enzyme for the utilization of substituted xylans. Appl Environ Microbiol 61:1077–1081Google Scholar
  92. Shaw AJ, Jenney FE, Adams MWW, Lynd LR (2008a) End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb Technol 42:453–458CrossRefGoogle Scholar
  93. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008b) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105:13769–13774CrossRefGoogle Scholar
  94. Shaw AJ, Hogsett DA, Lynd LR (2009) Identification of the [FeFe]-Hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191:6457–6464CrossRefGoogle Scholar
  95. Slapack GE, Russel I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC, Boca RatonGoogle Scholar
  96. Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Transact 32:283–289CrossRefGoogle Scholar
  97. Sorensen HR, Meyer AS, Pedersen S (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-l-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Biotechnol Bioeng 81:726–731CrossRefGoogle Scholar
  98. Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRefGoogle Scholar
  99. Sparling R, Islam R, Cicek N, Carere C, Chow H, Levin DB (2006) Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol 52:681–688CrossRefGoogle Scholar
  100. Spindler DD, Wyman CE, Mohagheghi A, Grohmann K (1988) Thermo-tolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Biochem Biotechnol 17:279–293CrossRefGoogle Scholar
  101. Strobel HJ, Caldwell FC, Dawson KA (1995) Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI. Appl Environ Microbiol 61:4012–4015Google Scholar
  102. Suzuki Y, KishigamiT IK, Mizoguchi Y, Eto N, Takagi M, Abe S (1983) Bacillus thermoglucosidasius sp nov, a new species of obligately thermophilic bacilli. System Appl Microbiol 4:487–495Google Scholar
  103. Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng 102:1377–1386CrossRefGoogle Scholar
  104. Thomasser C, Danner H, Neureiter M, Saidi B, Braun R (2002) Thermophilic fermentation of hydrolysates—the effect of inhibitors on growth of thermophilic bacteria. Appl Biochem Biotechnol 98:765–773CrossRefGoogle Scholar
  105. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, Mccool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta Mutant. Appl Environ Microbiol 76:6591–6599CrossRefGoogle Scholar
  106. Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70:883–890CrossRefGoogle Scholar
  107. Tyurin MV, Lynd LR, Wiegel J (2006) Gene transfer systems for obligately anaerobic thermophilic bacteria. Academic, LondonGoogle Scholar
  108. Venkateswaran S, Demain AL (1986) The Clostridium thermocellumClostridium thermosaccharolyticum ethanol-production process—nutritional studies and scale-down. Chem Eng Com 45:53–60CrossRefGoogle Scholar
  109. Wang DIC, Avgerinos GC, Biocic I, Wang SD, Fang HY (1983) Ethanol from cellulosic biomass. Philos Trans R Soc Lond Ser B-Biol Sci 300:323–333CrossRefGoogle Scholar
  110. Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen-nov, spec-nov, a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348CrossRefGoogle Scholar
  111. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803CrossRefGoogle Scholar
  112. Yao S (2008) Metabolic engineering of ethanol production in Thermoanaerobacter mathranii BG1. Ph.D. thesis, Risø Technical University of Denmark, RoskildeGoogle Scholar
  113. Yao S, Mikkelsen MJ (2010a) Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 19:123–133CrossRefGoogle Scholar
  114. Yao S, Mikkelsen MJ (2010b) Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88:199–208CrossRefGoogle Scholar
  115. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34CrossRefGoogle Scholar
  116. Zeikus JG (1980) Chemical and fuel production by anaerobic bacteria. Ann Rev Microbiol 34:423–464CrossRefGoogle Scholar
  117. Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen-nov and sp-nov, a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48CrossRefGoogle Scholar
  118. Zeikus JG, Benbassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440Google Scholar
  119. Zhang YHP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102:7321–7325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Microbial Engineering Group, Biosystems Division, Risoe National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations