Metabolic engineering of flavonoids in plants and microorganisms



Over 9,000 flavonoid compounds have been found in various plants, comprising one of the largest families of natural products. Flavonoids are an essential factor in plant interactions with the environment, often serving as the first line of defense against UV irradiation and pathogen attacks. Flavonoids are also major nutritional compounds in foods and beverages, with demonstrated health benefits. Some flavonoids are potent antioxidants, and specific flavonoid compounds are beneficial in many physiological and pharmacological processes. Therefore, engineering of flavonoid biosynthesis in plants or in microorganisms has significant scientific and economical importance. Construction of biosynthetic pathways in heterologous systems offers promising results for large-scale flavonoid production by fermentation or bioconversion. Genomics and metabolomics now offer unprecedented tools for detailed understanding of the engineered transgenic organism and for developing novel technologies to further increase flavonoid production yields. We summarize some of the recent metabolic engineering strategies in plants and microorganisms, with a focus on applications of metabolic flux analysis. We are confident that these engineering approaches will lead to successful industrial flavonoid production in the near future.


Flavonoids Resveratrol Metabolic engineering Metabolic flux 



This work is support in part by three federal grants to Oliver Yu, one is from US Department of Energy (DE-SC0001295), one from National Science Foundation (MCB-0923779), and one from US Department of Agriculture (2010-65116-20514).


  1. Becker JV, Armstrong GO, van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85CrossRefGoogle Scholar
  2. Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162CrossRefGoogle Scholar
  3. Chemler JA, Lock LT, Koffas MA, Tzanakakis ES (2007) Standardized biosynthesis of flavan-3-ols with effects on pancreatic beta-cell insulin secretion. Appl Microbiol Biotechnol 77:797–807CrossRefGoogle Scholar
  4. Chemler JA, Fowler ZL, McHugh KP, Koffas MA (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12:96–104CrossRefGoogle Scholar
  5. Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268CrossRefGoogle Scholar
  6. Deroles S (2009) Anthocyanin biosynthesis in plant cell cultures: A potential source of natural colourants. In: Gould K (ed) Anthocyanins: Biosynthesis, functions, and applications. Springer, New York, pp 107–167Google Scholar
  7. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4:394–400CrossRefGoogle Scholar
  8. Feng L, Jin J, Zhang LF, Yan T, Tao WY (2006) Analysis of the resveratrol-binding protein using phage-displayed random peptide library. Acta Biochim Biophys Sin (Shanghai) 38:342–348CrossRefGoogle Scholar
  9. Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370CrossRefGoogle Scholar
  10. Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498CrossRefGoogle Scholar
  11. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160CrossRefGoogle Scholar
  12. Fornale S, Shi X, Chai C, Encina A, Irar S, Capellades M, Fuguet E, Torres JL, Rovira P, Puigdomenech P, Rigau J, Grotewold E, Gray J, Caparros-Ruiz D (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644CrossRefGoogle Scholar
  13. Fowler ZL, Gikandi WW, Koffas MA (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839CrossRefGoogle Scholar
  14. Ge H, Zhang JF, Guo BS, He Q, Wang BY, He B, Wang CQ (2007) Resveratrol inhibits macrophage expression of EMMPRIN by activating PPARgamma. Vascul Pharmacol 46:114–121CrossRefGoogle Scholar
  15. Huang L, Xiao P, Guo L, Gao W (2010) Molecular pharmacognosy. Sci China Life Sci 53:643–652CrossRefGoogle Scholar
  16. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706CrossRefGoogle Scholar
  17. Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969CrossRefGoogle Scholar
  18. Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK, Vaistij FE, Bowles DJ (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295CrossRefGoogle Scholar
  19. Lanot A, Hodge D, Lim EK, Vaistij FE, Bowles DJ (2008) Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 228:609–616CrossRefGoogle Scholar
  20. Leonard E, Chemler J, Lim KH, Koffas MA (2006a) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biotechnol 70:85–91CrossRefGoogle Scholar
  21. Leonard E, Yan Y, Koffas MA (2006b) Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng 8:172–181CrossRefGoogle Scholar
  22. Leonard E, Lim KH, Saw PN, Koffas MA (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886CrossRefGoogle Scholar
  23. Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MA (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265CrossRefGoogle Scholar
  24. Li X, Bonawitz ND, Weng JK, Chapple C (2010) The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell 22:1620–1632CrossRefGoogle Scholar
  25. Lim SS, Jung SH, Ji J, Shin KH, Keum SR (2001) Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J Pharm Pharmacol 53:653–668Google Scholar
  26. Mavel S, Dikic B, Palakas S, Emond P, Greguric I, de Gracia AG, Mattner F, Garrigos M, Guilloteau D, Katsifis A (2006) Synthesis and biological evaluation of a series of flavone derivatives as potential radioligands for imaging the multidrug resistance-associated protein 1 (ABCC1/MRP1). Bioorg Med Chem 14:1599–1607CrossRefGoogle Scholar
  27. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678CrossRefGoogle Scholar
  28. Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504CrossRefGoogle Scholar
  29. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425Google Scholar
  30. Nishiyama Y, Yun CS, Matsuda F, Sasaki T, Saito K, Tozawa Y (2010) Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta 232:209–218CrossRefGoogle Scholar
  31. Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388CrossRefGoogle Scholar
  32. Ro DK, Douglas CJ (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J Biol Chem 279:2600–2607CrossRefGoogle Scholar
  33. Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400CrossRefGoogle Scholar
  34. Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285CrossRefGoogle Scholar
  35. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366CrossRefGoogle Scholar
  36. van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262CrossRefGoogle Scholar
  37. Wang Y, Chen H, Yu O (2010) Metabolic engineering of resveratrol and other longevity boosting compounds. Biofactors 36:394–400CrossRefGoogle Scholar
  38. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng. doi: 10.1016/j.ymben.2011.04.005
  39. Watts KT, Lee PC, Schmidt-Dannert C (2004) Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. Chembiochem 5:500–507CrossRefGoogle Scholar
  40. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493CrossRefGoogle Scholar
  41. Yan Y, Kohli A, Koffas MA (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613CrossRefGoogle Scholar
  42. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307CrossRefGoogle Scholar
  43. Ylstra B, Touraev A, Moreno RM, Stoger E, van Tunen AJ, Vicente O, Mol JN, Heberle-Bors E (1992) Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol 100:902–907CrossRefGoogle Scholar
  44. Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762CrossRefGoogle Scholar
  45. Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198CrossRefGoogle Scholar
  46. Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031CrossRefGoogle Scholar
  47. Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Donald Danforth Plant Science CenterSt. LouisUSA
  2. 2.Blue CaliforniaRancho Santa MargaritaUSA

Personalised recommendations