Advertisement

Applied Microbiology and Biotechnology

, Volume 91, Issue 4, pp 937–947 | Cite as

Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid

  • Jochen Schmid
  • Vera Meyer
  • Volker Sieber
Mini-Review

Abstract

Since its first description in the early 1960s, scleroglucan attracted much attention from both academia and industry. Scleroglucan is an exopolysaccharide secreted by the basidiomycete Sclerotium rolfsii and appreciated as a multipurpose compound applicable in many industrial fields, including oil industry, food industry and pharmacy. In this review, the current knowledge on scleroglucan chemistry, genetics, biosynthesis and production will be summarized and different application possibilities will be discussed. The biosynthesis of scleroglucan in S. rolfsii will be highlighted by recent transcriptomic data and linked to physiological data to better understand the biogenesis of scleroglucan and its link to the phytopathologic lifestyle of S. rolfsii.

Keywords

Scleroglucan Biosynthesis Sclerotium rolfsii Fermentation Transcriptome Exopolysaccharide 

Notes

Acknowledgments

This work was supported in part by the German Federal Ministry of Research and Education for financial support (BMBF grant 0313397). The authors are grateful to Brian McNeal and Robert Seviour for exchange of unpublished documents.

References

  1. Armentrout VN, Graves LB, Maxwell DP (1978) Localization of enzymes of oxalate biosynthesis in microbodies of Scierotium rolfsii. Phytopathology 68:1597–1599CrossRefGoogle Scholar
  2. Aycock R (1966) Stem rot and other diseases caused by Sclerotium rolfsii. NC Agr Expt St Tech Bul 174Google Scholar
  3. Bardet M, Rousseau A, Vincendon M (1993) High-resolution solid-state 13C CP/MAS NMR study of scleroglucan hydration. Magn Reson Chem 31(10):887–892CrossRefGoogle Scholar
  4. Bateman DF (1972) The polygalacturonase complex produced by Sclerotium rolfsii. Physiol Plant Pathol 2(2):175–184CrossRefGoogle Scholar
  5. Bateman DF, Beer SV (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211Google Scholar
  6. Batra KK, Nordin JH, Kirkwood S (1969) Biosynthesis of the β-glucan of Sclerotium rolfsii sacc. Direction of chain propagation and the insertion of the branch residues. Carbohyd Res 9(2):221–229CrossRefGoogle Scholar
  7. Bimczok D, Wrenger J, Schirrmann T, Rothkötter HJ, Wray V, Rau U (2009) Short chain regioselectively hydrolyzed scleroglucans induce maturation of porcine dendritic cells. Appl Microbiol Biot 82(2):321–331CrossRefGoogle Scholar
  8. Bluhm TL, Deslandes Y, Marchessault RH, Pérez S, Rinaudo M (1982) Solid-state and solution conformation of scleroglucan. Carbohyd Res 100(1):117–130CrossRefGoogle Scholar
  9. Bocchinfuso G, Mazzuca C, Sandolo C, Margheritelli S, Alhaique F, Coviello T, Palleschi A (2010) Guar gum and scleroglucan interactions with borax: experimental and theoretical studies of an unexpected similarity. J Phys Chem B 114(41):13059–13068CrossRefGoogle Scholar
  10. Chen J, Seviour R (2007) Medicinal importance of fungal β-(1–>3), (1–>6)-glucans. Mycol Res 111(6):635–652CrossRefGoogle Scholar
  11. Chupp C, Sherf AF (1960) Vegetables disease and their control. Ronald, New York, pp 314–317Google Scholar
  12. Coviello T, Coluzzi G, Palleschi A, Grassi M, Santucci E, Alhaique F (2003a) Structural and rheological characterization of scleroglucan/borax hydrogel for drug delivery. Int J Biol Macromol 32(3–5):83–92CrossRefGoogle Scholar
  13. Coviello T, Grassi M, Lapasin R, Marino A, Alhaique F (2003b) Scleroglucan/borax: characterization of a novel hydrogel system suitable for drug delivery. Biomaterials 24(16):2789–2798CrossRefGoogle Scholar
  14. Coviello T, Palleschi A, Grassi M, Matricardi P, Bocchinfuso G, Alhaique F (2005) Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules 10(1):6–33CrossRefGoogle Scholar
  15. Coviello T, Alhaique F, Dorigo A, Matricardi P, Grassi M (2007) Two galactomannans and scleroglucan as matrices for drug delivery: preparation and release studies. Eur J Pharm Biopharm 66(2):200–209CrossRefGoogle Scholar
  16. Dae EJ, KI SS, Taek CG, J.Y. S, Kyung KJ, Man JY, Jung AH, Ni CN (2009) Method for production of scleroglucan through cultivation of Sclerotium sp. in culture medium including mandarin peels as carbon sources. C12P19/04Google Scholar
  17. Davison P, Mentzer E (1982) Polymer flooding in North Sea reservoirs. SPE J 22(3):353–362Google Scholar
  18. Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41(3):266–273CrossRefGoogle Scholar
  19. Deshpande MV, Balkrishnan H, Ranjekar PK, Shankar V (1987) Isolation and immobilization of Sclerotium rolfsii protoplasts. Biotechnol Lett 9(1):49–52CrossRefGoogle Scholar
  20. Dogsa I, Strancar J, Laggner P, Stopar D (2008) Efficient modeling of polysaccharide conformations based on small-angle X-ray scattering experimental data. Polymer 49(5):1398–1406CrossRefGoogle Scholar
  21. Doster M, Martha S, Nute AJ, Christopher CA (1984) Method of recovering petroleum from underground formations. USA Patent 4,457,372Google Scholar
  22. Duc ANC (1982) Glucosylglucans and their use in gastroenterology, especially in the treatment of colon disorders. Europe Patent 45,338Google Scholar
  23. Dutton M, Evans C (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Bot 42:881–895Google Scholar
  24. Fariña JI, Siñeriz F, Molina OE, Perotti NI (1996) Determination of radial growth rate of colonies of Sclerotium rolfsii F-6656 for the evaluation of culture medium, optimum incubation temperature, osmo- and halotolerance. Rev Argent Microbiol 28(4):190–196Google Scholar
  25. Fariña JI, Siñeriz F, Molina OE, Perotti NI (1998) High scleroglucan production by Sclerotium rolfsii: influence of medium composition. Biotechnol Lett 20(9):825–831CrossRefGoogle Scholar
  26. Fariña JI, Siñeriz F, Molina OE, Perotti NI (2001) Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohyd Polym 44(1):41–50CrossRefGoogle Scholar
  27. Fariña JI, Molina OE, Figueroa LIC (2004) Formation and regeneration of protoplasts in Sclerotium rolfsii ATCC 201126. J Appl Microbiol 96(2):254–262CrossRefGoogle Scholar
  28. Fariña JI, Viñarta SC, Cattaneo M, Figueroa LIC (2009) Structural stability of Sclerotium rolfsii ATCC 201126 β-glucan with fermentation time: a chemical, infrared spectroscopic and enzymatic approach. J Appl Microbiol 106(1):221–232CrossRefGoogle Scholar
  29. Farwick M, Lersch P, Schmitz G, Müllner S, Wattenberg A (2009) “Skin-omics”: use of genomics, proteomics and lipidomics to assess effects of low molecular weight scleroglucan. Cosmetic Science Technology Evonik Industries, pp 100–105Google Scholar
  30. Fosmer A, Gibbons WR, Heisel NJ (2010) Reducing the cost of scleroglucan production by use of a condensed corn solubles medium. J Biotech Res 2(131–143)Google Scholar
  31. Funami T (2010) Atomic force microscopy imaging of food polysaccharides. Food Sci and Technol Res 16(1):1–12CrossRefGoogle Scholar
  32. Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48CrossRefGoogle Scholar
  33. Griffith WL, Compere AL, Westmoreland CG, Johnson JS (1981) Separation of biopolymer from fermentation broths. In: Synthetic membranes, vol II. ACS symposium series, vol 154. Am Chem Soc 154:171–192Google Scholar
  34. Gura E, Rau U (1993) Comparison of agitators for the production of branched β-1,3-d-glucans by Schizophyllum commune. J Biotechnol 27(2):193–201CrossRefGoogle Scholar
  35. Haarstrick A, Rau U, Wagner F (1991) Cross-flow filtration as a method of separating fungal cells and purifying the polysaccharide produced. Bioprocess Biosyst Eng 6(4):179–186Google Scholar
  36. Halleck FE (1967) Polysaccharides and methods for production thereof. US Patent 3,301,848Google Scholar
  37. Halleck FE (1969) Paint composition containing polysaccharides. US Patent 3,447,940Google Scholar
  38. Halleck FE (1970) Wave set composition containing a polysaccharides. US Patent 3,507,290Google Scholar
  39. Halleck FE (1972) Cosmetic composition employing water-soluble polysaccharide. US Patent 3,659,025Google Scholar
  40. Jain A, Gupta Y, Jain SK (2007) Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci 10(1):86–128Google Scholar
  41. Jeannin M, Rezzoug SA, Maache-rezzoug Z, Cohendoz S, Allaf K (2000) Solid-state 13C NMR study of scleroglucan polysaccharide. Effect of the drying process and hydration on scleroglucan structure and dynamics. Int J Polym Anal Ch 6(1):177–191CrossRefGoogle Scholar
  42. Johnson M (1996) Fluid systems for controlling fluid losses during hydrocarbon recovery operations. United States Patent 5228524Google Scholar
  43. Jong S, Donovick R (1989) Antitumor and antiviral substances from fungi. Adv Appl Microbiol 34(183)Google Scholar
  44. Kang X, Wang Y, Harvey LM, McNeil B (2000) Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop. Bioprocess Biosyst Eng 23(1):69–74Google Scholar
  45. Kelkar HS, Shankar V, Deshpande MV (1990) Rapid isolation and regeneration of Sclerotium rolfsii protoplasts and their potential application for starch hydrolysis. Enzyme Microb Tech 12(7):510–514CrossRefGoogle Scholar
  46. Kitamura S, Takeo K, Kuge T, Stokke BT (1991) Thermally induced conformational transition of double-stranded xanthan in aqueous salt solutions. Biopolymers 31(11):1243–1255CrossRefGoogle Scholar
  47. Kitamura S, Hirano T, Takeo K, Fukada H, Takahashi K, Falch BH, Stokke BT (1996) Conformational transitions of schizophyllan in aqueous alkaline solution. Biopolymers 39:407–416CrossRefGoogle Scholar
  48. Kony DB, Damm W, Stoll S, van Gunsteren WF, Hünenberger PH (2007) Explicit-solvent molecular dynamics simulations of the polysaccharide schizophyllan in water. Biophys J 93(2):442–455CrossRefGoogle Scholar
  49. Kottutz E, Rapp P (1990) 1,3-β-Glucan synthase in cell-free extracts from mycelium and protoplasts of Sclerotium glucanicum. J Gen Microbiol 136(8):1517–1523Google Scholar
  50. Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresource Technol 99(5):1036–1043CrossRefGoogle Scholar
  51. Laroche C, Michaud P (2007) New developments and prospective applications for b (1,3) glucans. Recent Pat Biotechnol 1:59–73CrossRefGoogle Scholar
  52. Leathers T, Nunnally M, Price N (2006) Co-production of schizophyllan and arabinoxylan from corn fiber. Biotechnol Lett 28(9):623–626CrossRefGoogle Scholar
  53. Lecacheux D, Mustiere Y, Panaras R, Brigand G (1986) Molecular weight of scleroglucan and other extracellular microbial polysaccharides by size-exclusion chromatography and low angle laser light scattering. Carbohyd Polym 6(6):477–492CrossRefGoogle Scholar
  54. Lee K (1998) Characterization of scleroglucan fermentation by Sclerotium rolfsii in terms of cell, scleroglucan and by-product, oxalic acid concentrations, viscosity and molecular weight distribution. IrvineGoogle Scholar
  55. Maier T (2004) Process for the production of scleroglucan. Germany Patent 20,040,265,977Google Scholar
  56. Mastromarino P, Petruzziello R, Macchia S, Rieti S, Nicoletti R, Orsi N (1997) Antiviral activity of natural and semisynthetic polysaccharides on early steps of rubella virus infection. J Antimicrob Chemother 39:339CrossRefGoogle Scholar
  57. Maxwell DP, Bateman DF (1965) Influence of carbon source and pH on oxalate accumulation in culture filtrates of S. rolfsii. Phytopathology 58:1351–1355Google Scholar
  58. McIntire TM, Brant DA (1998) Observations of the (1 → 3)-β-d-glucan linear triple helix to macrocycle interconversion using noncontact atomic force microscopy. J Am Chem Soc 120(28):6909–6919CrossRefGoogle Scholar
  59. Montant PC, Thomas L (1977) Structure d'un glucane exo-cellulaire produit par le Botrytis cinerea. Ann Sci Nat Bot Biol Veg 12:185–192Google Scholar
  60. Montant PC, Thomas L (1978) Proprietes physicochimiques du P(1,3)-β-(1,6) glucane exocellulaire produit par le Botrytis cinerea. Ann Sci Nat Bot Biol Veg 12:39–43Google Scholar
  61. Moresi M, Lo Presti S, Mancini M (2001) Rheology of scleroglucan dispersions. J Food Eng 50(4):235–245CrossRefGoogle Scholar
  62. Munir E, Yoon J, Tokimatsu T, Hattori T, Shimada M (2001) A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. Proc Natl Acad Sci USA 98(20):11126–11130CrossRefGoogle Scholar
  63. Munoz-Rivas A, Specht C, Drummond B, Froeliger E, Novotny C, Ullrich R (1986) Transformation of the basidiomycete, Schizophyllum commune. Mol Gen Genet 205(1):103–106CrossRefGoogle Scholar
  64. Nardin R, Vincendon M (1989) Isotopic exchange study of the scleroglucan chain in solution. Macromolecules 22(9):3551–3554CrossRefGoogle Scholar
  65. Noïk C, Lecourtier J (1993) Studies on scleroglucan conformation by rheological measurements versus temperature up to 150°C. Polymer 34(1):150–157CrossRefGoogle Scholar
  66. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kues U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FW, vanKuyk PA, Horton JS, Grigoriev IV, Wosten HA (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963CrossRefGoogle Scholar
  67. Palleschi A, Bocchinfuso G, Coviello T, Alhaique F (2005) Molecular dynamics investigations of the polysaccharide scleroglucan: first study on the triple helix structure. Carbohyd Res 340(13):2154–2162CrossRefGoogle Scholar
  68. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259CrossRefGoogle Scholar
  69. Patchen LBP (2000) Mobilisation of peripheral blood precursor cells by beta (1,3)-glucan. USA PatentGoogle Scholar
  70. Pilz F, Auling G, Dr S, Rau U, Wagner F (1991) A high-affinity Zn2+ uptake system controls growth and biosynthesis of an extracellular, branched β-1,3-β-1,6-glucan in Sclerotium rolfsii ATCC 15205. Exp Mycol 15(3):181–192CrossRefGoogle Scholar
  71. Pirri RG (1996) Scleroglucan gel applied in the oil industry. France Patent 5,555,936Google Scholar
  72. Plank J (2005) Applications of Biopolymers in Construction Engineering. In: Biopolymers, Whiley OnlineGoogle Scholar
  73. Prets H, Eusley H, McNamee R, Jones E, Browder I, Williams D (1991) Isolation, physicochemical characterisation and pre-clinical efficacy evaluation of a soluble scleroglucan. J Pharmacol Exp Ther 257:500Google Scholar
  74. Pretus HA, Ensley HE, McNamee RB, Jones EL, Browder IW, Williams DL (1991) Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan. J Pharmacol Exp Ther 257(1):500–510Google Scholar
  75. Qian JY, Chen W, Zhang WM, Zhang H (2009) Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: a primary approach. Carbohyd Polym 78(3):620–625CrossRefGoogle Scholar
  76. Rau U, Müller RJ, Cordes K, Klein J (1990) Process and molecular data of branched 1,3-β-d-glucans in comparison with xanthan. Bioprocess Biosyst Eng 5(2):89–93Google Scholar
  77. Rau U, Gura E, Olszewski E, Wagner F (1992) Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol Biot 9(1):19–25Google Scholar
  78. Reyes RG (2009) Coconut water as a novel culture medium for the biotechnological production of schizophyllan. Journal of Nature Studies 7(2)Google Scholar
  79. Rinaudo M, Vincendon M (1982) 13C NMR structural investigation of scleroglucan. Carbohydr Polym 2(2):135–144CrossRefGoogle Scholar
  80. Rizk S, Duru C, Gaudy D, Jacob M, Ferrari F, Bertoni M, Caramella C (1994) Physico-chemical characterization and tabletting properties of scleroglucan. Int J Pharm 112(2):125–131CrossRefGoogle Scholar
  81. Rodgers NE (1973) Scleroglucan. In: Press A (ed) Industrial gums. Academic, New York, pp 499–511Google Scholar
  82. Sakurai K, Shinkai S (2000) Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan. J Am Chem Soc 122:4520–4521CrossRefGoogle Scholar
  83. Sakurai K, Mizu M, Shinkai S (2001) Polysaccharide-polynucleotide complexes. 2. Complementary polynucleotide mimic behavior of the natural polysaccharide schizophyllan in the macromolecular complex with single-stranded RNA and DNA. Biomacromolecules 2:641–650CrossRefGoogle Scholar
  84. Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S (2005) β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem Commun 4383–4398Google Scholar
  85. Sandford PA (1979) Exocellular, microbial polysaccharides. Adv Carbohydr Chem Biochem 36:265–313CrossRefGoogle Scholar
  86. Schilling BM (2000) Sclerotium rolfsii ATCC 15205 in continuous culture: economical aspects of scleroglucan production. Bioprocess Biosyst Eng 22(1):57–61Google Scholar
  87. Schilling BM, Henning A, Rau U (2000) Repression of oxalic acid biosynthesis in the unsterile scleroglucan production process with Sclerotium rolfsii ATCC 15205. Bioprocess Biosyst Eng 22(1):51–55Google Scholar
  88. Schmid J (2008) Genetics of scleroglucan production by Sclerotium rolfsii. University of Technology, BerlinGoogle Scholar
  89. Schmid F, Stone BA, McDougall BM, Bacic A, Martin KL, Brownlee RTC, Chai E, Seviour RJ (2001) Structure of epiglucan, a highly side-chain/branched (1-->3;1-->6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht. Carbohyd Res 331(2):163–171CrossRefGoogle Scholar
  90. Schmid F, Stone BA, Brownlee RT, McDougall BM, Seviour RJ (2006) Structure and assembly of epiglucan, the extracellular (1–>3;1–>6)-β-glucan produced by the fungus Epicoccum nigrum strain F19. Carbohydr Res 341(3):365–373CrossRefGoogle Scholar
  91. Schmid J, Müller-Hagen D, Bekel T, Funk L, Stahl U, Sieber V, Meyer V (2010) Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii. BMC Genomics 11:329CrossRefGoogle Scholar
  92. Schuren F, Wessels J (1994) Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance. Curr Genet 26(2):179–183CrossRefGoogle Scholar
  93. Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011a) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31(2):170–185CrossRefGoogle Scholar
  94. Seviour RJ, Schmid F, Campbell B (2011b) Fungal exopolysaccharides. In: Popa V (ed) Polysaccharides in medicinal and pharmaceutical applications. ISmithers, ShrewsburyGoogle Scholar
  95. Sheth P, Lachman L (1967) The coating of tablets. France Patent 1,480,874Google Scholar
  96. Sieber V, Wittmann E, Buchholz S (2005) Polysaccharide. In: Antranikian PG (ed) Lehrbuch für Angewandte Mikrobiologie. Springer, Berlin, pp 399–410Google Scholar
  97. Singh P, Wisler R, Tokuzen R, Nakahara W (1974) Scleroglucan, an antitumor polysaccharide from Sclerotium glucanicum. Carbohyd Res 37:245CrossRefGoogle Scholar
  98. Sletmoen M, Stokke BT (2008) Higher order structure of (1,3)-β-d-glucans and its influence on their biological activities and complexation abilities. Biopolymers 89(4):310–321CrossRefGoogle Scholar
  99. Stokke BT, Elgsaeter A, Hara C, Kitamura S, Takeo K (1993) Physicochemical properties of (1 → 6)-branched (1 → 3)-β-d-glucans. 1. Physical dimensions estimated from hydrodynamic and electron microscopic data. Biopolymers 33(4):561–573CrossRefGoogle Scholar
  100. Stokke BT, Falch BH, Dentini M (2001) Macromolecular triplex zipping observed in derivatives of fungal (1 → 3)-β-d-glucan by electron and atomic force microscopy. Biopolymers 58(6):535–547CrossRefGoogle Scholar
  101. Stone BA (2009) Chemistry of β-glucans. In: Antony B, Geoffrey BF, Bruce AS (eds) Chemistry, biochemistry, and biology of 1–3 β-glucans and related polysaccharides, vol 1. Academic, San Diego, pp 5–46Google Scholar
  102. Survase SA, Saudagar PS, Bajaj IB, Singhal RS (2007a) Scleroglucan: fermentative production, downstream processing and applications. Food Technol Biotechnol 45(2):107–118Google Scholar
  103. Survase SA, Saudagar PS, Singhal RS (2007b) Enhanced production of scleroglucan by Sclerotium rolfsii MTCC 2156 by use of metabolic precursors. Bioresour Technol 98(2):410–415CrossRefGoogle Scholar
  104. Survase SA, Saudagar PS, Singhal RS (2007c) Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresour Technol 98(7):1509–1512CrossRefGoogle Scholar
  105. Sutherland IW (1977) Microbial exopolysaccharide synthesis. In: Extracellular microbial polysaccharides, vol 45. ACS Symposium Series, vol 45. American Chemical Society, pp 40–57Google Scholar
  106. Sutherland IW (1993) Biosynthesis of extracellular polysaccharides. In: Whsitler RL, BeMiller JN (eds) Industrial gums. Academic, San Diego, pp 69–85Google Scholar
  107. Taskin M, Erdal S, Canli O (2010) Utilization of waste loquat (Eriobotrya japonica; Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology 19(4):1069–1075CrossRefGoogle Scholar
  108. Taurhesia S, McNeil B (1994) Physicochemical factors affecting the formation of the biological response modifier scleroglucan. J Chem Technol Biotechnol 59(2):157–163CrossRefGoogle Scholar
  109. Viñarta SC, François NJ, Daraio ME, Figueroa LIC, Fariña JI (2007) Sclerotium rolfsii scleroglucan: the promising behavior of a natural polysaccharide as a drug delivery vehicle, suspension stabilizer and emulsifier. Int J Biol Macromol 41(3):314–323CrossRefGoogle Scholar
  110. Vuppu AK, Garcia AA, Vernia C (1997) Tapping mode atomic force microscopy of scleroglucan networks. Biopolymers 42(1):89–100CrossRefGoogle Scholar
  111. Wang Y, McNeil B (1994) Scleroglucan and oxalic acid formation by Sclerotium glucanicum in sucrose supplemented fermentation. Biotechnol Lett 16:605–610CrossRefGoogle Scholar
  112. Wang Y, McNeil B (1995) Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum. Enzyme MicrobTech 17(10):893–899CrossRefGoogle Scholar
  113. Wang Y, McNeil B (1996) Scleroglucan. Crit Rev Biotechnol 16(3):185–215CrossRefGoogle Scholar
  114. Wang X, Xu X, Zhang L (2008) Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution. J Phys Chem B 112(33):10343–10351CrossRefGoogle Scholar
  115. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. In: Allen I, Laskin SS, Geoffrey MG (eds) Advances in applied microbiology, vol 72. Academic, Burlington, pp 89–136Google Scholar
  116. Xu Z, Harrington TC, Gleason ML, Batzer JC (2010) Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera. Mycologia 102(2):337–346CrossRefGoogle Scholar
  117. Yanaki T, Norisuye T (1983) Triple helix and random coil of scleroglucan in dilute solution. Polym J 15:187–396CrossRefGoogle Scholar
  118. Yanaki T, Kojima T, Norisuye T (1981) Triple helix of scleroglucan in dilute aqueous sodiumhydroxide. Polym J 153:1135–1143CrossRefGoogle Scholar
  119. Yasokawa D, Shimizu T, Nakagawa R, Ikeda T, Nagashima K (2003) Cloning, sequencing, and heterologous expression of a cellobiohydrolase cDNA from the basidiomycete Corticium rolfsii. Biosci Biotech Bioch 67(6):1319–1326CrossRefGoogle Scholar
  120. Yu R, Wang L, Zhang H, Zhou C, Zhao Y (2004) Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 75(7–8):662–666CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Chemistry of Biogenic ResourcesTechnische Universität MünchenStraubingGermany
  2. 2.Department of Applied and Molecular MicrobiologyBerlin University of TechnologyBerlinGermany

Personalised recommendations