Scientific challenges of bioethanol production in Brazil

  • Henrique V. Amorim
  • Mário Lucio Lopes
  • Juliana Velasco de Castro Oliveira
  • Marcos S. Buckeridge
  • Gustavo Henrique Goldman
Mini-Review

Abstract

Bioethanol (fuel alcohol) has been produced by industrial alcoholic fermentation processes in Brazil since the beginning of the twentieth century. Currently, 432 mills and distilleries crush about 625 million tons of sugarcane per crop, producing about 27 billion liters of ethanol and 38.7 million tons of sugar. The production of bioethanol from sugarcane represents a major large-scale technology capable of producing biofuel efficiently and economically, providing viable substitutes to gasoline. The combination of immobilization of CO2 by sugarcane crops by photosynthesis into biomass together with alcoholic fermentation of this biomass has allowed production of a clean and high-quality liquid fuel that contains 93% of the original energy found in sugar. Over the last 30 years, several innovations have been introduced to Brazilian alcohol distilleries resulting in the improvement of plant efficiency and economic competitiveness. Currently, the main scientific challenges are to develop new technologies for bioethanol production from first and second generation feedstocks that exhibit positive energy balances and appropriately meet environmental sustainability criteria. This review focuses on these aspects and provides special emphasis on the selection of new yeast strains, genetic breeding, and recombinant DNA technology, as applied to bioethanol production processes.

Keywords

Brazil Saccharomyces cerevisiae Bioethanol production Ethanol fermentation 

References

  1. Amorim HV, Fernandes EAN, Nepomuceno MF, Trevizan AB (1998) From potential to reality: yeasts derived from ethanol production for animal nutrition. J Radioanal Nucl Chem 234:113–118CrossRefGoogle Scholar
  2. Amorim HV, Basso LC, Oliveira AJ, Godoy A, Cherubin RA, Lopes ML (2004) Identification and selection of yeast strains from alcoholic fermentations in Brazil by electrophoretic karyotyping. In: Eleventh International Congress on Yeasts in Science and Technology, 2004, Rio de Janeiro, vol. 1, p 51–51Google Scholar
  3. Amorim HV, Lopes ML (2004) Os principais processos de fermentação para álcool combustível no mundo. Guia Internacional do Álcool 1:74–77Google Scholar
  4. Amorim HV, Leão RM (2005) In: Amorim HV (ed) Fermentação alcoólica: Ciência e Tecnologia. Fermentec Editora, Piracicaba, SP, Brazil, pp 190–191Google Scholar
  5. Amorim HV, Lopes ML (2005) Ethanol production in a petroleum dependent world: the Brazilian experience. Sugar J 67:11–14Google Scholar
  6. Amorim HV (2006) Ethanol production in Brazil: a successful history. Proceedings of the Sugar Processing Research Conference 1:44–47Google Scholar
  7. Amorim HV, Basso LC, Lopes ML (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew WM, Kelsall DR, Austin GD, Kluhspies C (eds) The alcohol textbook: a reference for the beverage, fuel, and industrial alcohol industries, vol. 1. Nottingham University Press, Nottingham, pp 39–46Google Scholar
  8. Amorim HV, Gryschek M, Lopes ML (2010) The success and sustainability of the Brazilian sugarcane−fuel ethanol industry. In: Eggleston G (ed) Sustainability of the sugar and sugar ethanol industries, ACS Symposium Series. American Chemical Society, Washington, DC, pp 73–82, ACS Symposium Series, Vol. 1058, Chapter 5Google Scholar
  9. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270CrossRefGoogle Scholar
  10. Basílio AC, de Araújo PR, de Morais JO, da Silva Filho EA, de Morais MA, DA Jr S (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326CrossRefGoogle Scholar
  11. Basso LC, Oliveira AJ, Orelli VFDM, Campos AA, Gallo CR, Amorim HV (1993) Dominância das leveduras contaminantes sobre as linhagens industriais avaliada pela técnica da cariotipagem. Anais Congresso Nacional da STAB 5:246–250Google Scholar
  12. Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163CrossRefGoogle Scholar
  13. BNDES, CGEE (2008) Cana-de-açúcar: energia para o desenvolvimento sustentável. BNDES, Rio de Janeiro, p 316Google Scholar
  14. Buckeridge MS, Dos Santos WD, De Souza AP (2010) Routes for cellulosic ethanol in Brazil In: sugarcane bioethanol: R&D for productivity and sustainability (ed Cortez LAB), pp 365–380. Edgard Blucher, São PauloGoogle Scholar
  15. Cabrini KT, Gallo CR (1999) Identificação de leveduras no processo de fermentação alcoólica em usina do estado de São Paulo, Brasil. Scientia Agricola [online] vol.56(n.1): pp. 207–216. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90161999000100028&lng=en&nrm=iso. Accessed 28 March 2011
  16. Chaddad FR (2010) UNICA: challenges to deliver sustainability in the Brazilian sugarcane industry. International Food and Agribusiness Management Review 13:173–192Google Scholar
  17. Cherubin N (2011) Novas tecnologias em fermentação: garantia de eficiência e ganhos na produção de etanol. Revista Idea News 122:30–34Google Scholar
  18. Cortez LAB (2010) Routes for cellulosic ethanol in Brazil. In: Cortez LAB (ed) Sugarcane bioethanol: R&D for productivity and sustainability. Edgard Blucher, São Paulo, p 954Google Scholar
  19. de Souza Liberal AT, da Silva Filho EA, de Morais JO, Simões DA, de Morais MA Jr (2005) Contaminant yeast detection in industrial ethanol fermentation must by rDNA-PCR. Lett Appl Microbiol 40:19–23CrossRefGoogle Scholar
  20. Doerfler J, Amorim HV (2007) Applied bioethanol technology in Brazil. Sugar Industry 132:694–697Google Scholar
  21. dos Santos WD, Buckeridge MS, de Souza AP (2010) Routes for cellulosic ethanol in Brazil. In: Cortez LAB (ed) Sugarcane bioethanol: R&D for productivity and sustainability. Edgard Blucher, São Paulo, pp 365–380Google Scholar
  22. Eggleston G (2010) Future sustainability of the sugar and sugar−ethanol industries. In: Eggleston G (ed) Sustainability of the sugar and sugarethanol industries. ACS Symposium Series; American Chemical Society, Washington, DC, pp 1–19, Chapter 1, ACS Symposium Series, vol. 1058CrossRefGoogle Scholar
  23. Gallo CR (1990) Determinação da microbiota bacteriana de mosto e de dornas de fermentação alcoólica. 388 p. Tese de Doutorado—Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, SP. Available from: http://cutter.unicamp.br/document/?code=000038046&fd=y
  24. Godoy A, Amorim HV, Lopes ML, Oliveira AJ (2008) Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. Int Sugar J 110:175–181Google Scholar
  25. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRefGoogle Scholar
  26. Goldemberg J (2008) The Brazilian biofuels industry. Biothecnol Biofuels 1:6Google Scholar
  27. Ibeto CN, Ofoefule AU, Agbo KE (2011) A global overview of biomass potentials for bioethanol production: a renewable alternative fuel. Trends Appl Sci Res 6:410–425CrossRefGoogle Scholar
  28. Leal MRLV, Walter AS (2010) Sustainability of the production of ethanol from sugarcane: the Brazilian experience. Int Sugar J112:390–396Google Scholar
  29. Leite RCC, Leal MRLV, Cortez LAB, Griffin WM, Scandiffio MIG (2009) Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy 34:655–661CrossRefGoogle Scholar
  30. Lopes ML (2000) Estudo do polimorfismo cromossômico em Saccharomyces cerevisiae (linhagem PE2) utilizada no processo industrial de produção de etanol. PhD thesis, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista “Julio de Mesquita Filho”, Rio Claro, SPGoogle Scholar
  31. Lopes ML, Basso LC, Amorim HV (2002) Chromosomal polymorphism in Saccharomyces cerevisiae (strain PE-2) used in industrial fermentation for ethanol production. In: 2002 Yeast Genetics and Molecular Biology Meeting, University of Wisconsin, Madison, WI. 2002 Yeast Genetics & Molecular Biology, p. 159 (abstract 348). Available from: http://www.yeastgenome.org/community/meetings/yeast02/abshtml/348.html
  32. Lopes ML, Amorim HV, Godoy A, Oliveira AJ, Cherubin RA, Basso LC (2004) Interaction between yeast and acetic acid bacteria in industrial fermentation for ethanol production: a case study. In: Eleventh International Congress on Yeast-Yeasts in Science and Technology, 2004, Rio de Janeiro. Eleventh International Congress on Yeast–Yeasts in Science and Technology 1:183–183Google Scholar
  33. Lopes, ML (2010) 30 years of fuel ethanol production in Brazil. Identification and selection of dominant industrial yeast strains. In: 12th International Conference on Culture Collections. Biological resources centers: gateway to biodiversity and services for innovation in biotechnology Florianópolis, SC. Available from: http://www.iccc12.info/presentations/mlopes.pdf
  34. Lucena BT, dos Santos BM, Moreira JL, Moreira AP, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais MA Jr (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10:298CrossRefGoogle Scholar
  35. Macedo IC, Seabra JEA, Silva JE (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy 32:582–595CrossRefGoogle Scholar
  36. Mutton MA, Rossetto R, Mutton MJR (2010) Utilização agrícola da vinhaça. In: Cortez LAB (ed) Sugarcane bioethanol: R&D for productivity and sustainability. Edgard Blucher, São Paulo, pp 423–440Google Scholar
  37. Nogueira LAH, Seabra JEA, Best G, Leal MRLV, Poppe MK (2008) Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável. BNDES, Rio de Janeiro, p 316, v.1Google Scholar
  38. Porto SI, Silva ACP, Bestetti CR, Bressan Filho A, Oliveira CC, Oliviera JB, Negreiros JC, Almeida MBA, Andrade RA (2009) Brazilian crop assessment: sugarcane 2009/2010. Third estimate. 17p. CONAB, Brasilia, DF. Available from: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/fcff266126165d8ec2e9915c5d77d322..pdf
  39. Porto SI, Silva ACP, Bestétti CR, Bressan Filho A, Oliveira EP, Costa FC, Negreiros JC, Oliveira JB, Almeida MBA, Andrade RA (2011) Acompanhamento da safra brasileira. Cana-de-açúcar. Safra 2010/2011, terceiro levantamento. 19p. CONAB, Brasilia, DF. Available from: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_01_06_09_14_50_boletim_cana_3o_lev_safra_2010_2011..pdf
  40. Regalado A (2010) Brazil. Race for cellulosic fuels spurs Brazilian research program. Science 327:928–929CrossRefGoogle Scholar
  41. Roberto C (2010) Cogerar: um verbo cada vez mais conjugado pelo setor sucroalcooleiro. Idea News 116:20–26Google Scholar
  42. Soccol CR, Vandenberghe LP, Medeiros AB, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LM, Ferrara MA, da Silva Bon EP, de Moraes LM, Araújo Jde A, Torres FA (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825CrossRefGoogle Scholar
  43. Stambuk BU, Dunn B, Alves Junior SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–2278CrossRefGoogle Scholar
  44. Swayze S (2009) The sweet sorghum opportunity: a complementary source of low-cost fermentable sugars for biofuel. Int Sugar J 111:691–695Google Scholar
  45. van Haandel AC (2005) Integrated energy production and reduction of the environmental impact at alcohol distillery plants. Water Sci Technol 52:49–57Google Scholar
  46. Walter A, Dolzan P, Quilodrán O, Garcia J, Silva C, Piacente F, Segerstedt A (2008) A sustainability analysis of the Brazilian ethanol. Universidade Estadual de Campinas—UNICAMP, Campinas, SP. 167 p. Available from: http://www.globalbioenergy.org/uploads/media/0811_Unicamp_-_A_sustainability_analysis_of_the_Brazilian_ethanol.pdf
  47. Wheals A, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487CrossRefGoogle Scholar
  48. Zanin GM, Santana CC, Bon EP, Giordano RC, de Moraes FF, Andrietta SR, de Carvalho Neto CC, Macedo IC, Fo DL, Ramos LP, Fontana JD (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84–86:1147–1161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Henrique V. Amorim
    • 1
  • Mário Lucio Lopes
    • 1
  • Juliana Velasco de Castro Oliveira
    • 2
  • Marcos S. Buckeridge
    • 2
    • 3
  • Gustavo Henrique Goldman
    • 2
    • 4
  1. 1.FermentecPiracicabaBrazil
  2. 2.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)CampinasBrazil
  3. 3.Departamento de Botânica, Instituto de BiociênciasUniversidade de São Paulo, INCT do BioetanolSão PauloBrazil
  4. 4.Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo, INCT do BioetanolRibeirão PretoBrazil

Personalised recommendations