Applied Microbiology and Biotechnology

, Volume 91, Issue 3, pp 519–528

Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights

  • Jawad Merhej
  • Florence Richard-Forget
  • Christian Barreau
Mini-Review

Abstract

Trichothecenes are toxic secondary metabolites produced by filamentous fungi mainly belonging to the Fusarium genus. Production of these mycotoxins occurs during infection of crops and is a threat to human and animal health. Although the pathway for biosynthesis of trichothecenes is well established, the regulation of the Tri genes implicated in the pathway remains poorly understood. Most of the Tri genes are gathered in a cluster which contains two transcriptional regulators controlling the expression of the other Tri genes. The regulation of secondary metabolites biosynthesis in most fungal genera has been recently shown to be controlled by various regulatory systems in response to external environment. The control of the “Tri cluster” by non-cluster regulators in Fusarium was not clearly demonstrated until recently. This review covers the recent advances concerning the regulation of trichothecene biosynthesis in Fusarium and highlights the potential implication of various general regulatory circuits. Further studies on the role of these regulatory systems in the control of trichothecene biosynthesis might be useful in designing new strategies to reduce mycotoxin accumulation.

Keywords

Fusarium Trichothecene Tri cluster Regulation 

References

  1. Achilladelis B, Hanson JR (1968) Studies in terpenoid biosynthesis-I. The biosynthesis of metabolites of Tricothecium roseum. Phytochem 7:589–594CrossRefGoogle Scholar
  2. Alexander NJ, McCormick SP, Larson TM, Jurgenson JE (2004) Expression of Tri15 in Fusarium sporotrichioides. Curr Genet 45:157–162CrossRefGoogle Scholar
  3. Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215CrossRefGoogle Scholar
  4. Alexander NJ, McCormick SP, Waalwijk C, Van der Lee T, Proctor RH (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495CrossRefGoogle Scholar
  5. Arst HN, Peñalva MA (2003) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–231CrossRefGoogle Scholar
  6. Audenaert K, Callewaert E, Hölfe M, De Saeger S, Haesaert G (2010) Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol 10:112CrossRefGoogle Scholar
  7. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. AAAI Press, Menlo Park, pp 28–36Google Scholar
  8. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506CrossRefGoogle Scholar
  9. Beekrum S, Govinden R, Padayachee T, Odhav B (2003) Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Addit Contam 20:490–493CrossRefGoogle Scholar
  10. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516CrossRefGoogle Scholar
  11. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535CrossRefGoogle Scholar
  12. Boutigny AL, Barreau C, Atanasova-Penichon V, Verdal-Bonnin MN, Pinson-Gadais L, Richard-Forget F (2009) Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol Res 113:746–753CrossRefGoogle Scholar
  13. Boutigny AL, Atanasova-Penichon V, Benet M, Barreau C, Richard-Forget F (2010) Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur J Plant Pathol 127:275–286CrossRefGoogle Scholar
  14. Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32:121–133CrossRefGoogle Scholar
  15. Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233CrossRefGoogle Scholar
  16. Brown WD, Proctor HR, Dyer BR (2003) Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem 51:7936–7944CrossRefGoogle Scholar
  17. Brunner M, Káldi K (2008) Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol Microbiol 68:255–262CrossRefGoogle Scholar
  18. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402CrossRefGoogle Scholar
  19. Desjardins A (2006) Fusarium mycotoxins chemistry genetics and biology. The American Phytopathological Society Press, St. Paul, pp 13–19Google Scholar
  20. Dreyer J, Eichhorn H, Friedlin E, Kurnsteiner H, Kuck U (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 73:3412–3422CrossRefGoogle Scholar
  21. Duran RM, Cary JW, Calvo AM (2007) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol 73:1158–1168CrossRefGoogle Scholar
  22. Dyer RB, Plattner RD, Kendra DF, Brown DW (2005) Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J Agric Food Chem 53:9281–9287CrossRefGoogle Scholar
  23. Ehrlich KC, Cotty PJ (2002) Variability in nitrogen regulation of aflatoxin production by Aspergillus flavus strains. Appl Micro Biotech 60:174–178CrossRefGoogle Scholar
  24. Espeso EA, Tilburn J, Arst HN, Penalva MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956Google Scholar
  25. Flaherty J, Pirttila A, Bluhm B, Woloshuk C (2003) PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microbiol 69:5222–5227CrossRefGoogle Scholar
  26. Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819CrossRefGoogle Scholar
  27. Gale LR, Bryant JD, Calvo S, Giese H (2005) Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171:985–1001CrossRefGoogle Scholar
  28. Gardiner DM, Osborne S, Kazan K, Manners JM (2009a) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149–3156CrossRefGoogle Scholar
  29. Gardiner DM, Kazan K, Manners JM (2009b) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol 46:604–613CrossRefGoogle Scholar
  30. Gardiner DM, Kazan K, Manners JM (2009c) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microbe Interact 22:1588–1600CrossRefGoogle Scholar
  31. Gardiner DM, Kazan K, Praud S, Torney FJ, Rusu A, Manners JM (2010) Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biol 10:289CrossRefGoogle Scholar
  32. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525CrossRefGoogle Scholar
  33. Grünler J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212:259–277Google Scholar
  34. Haas H, Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28:177–183CrossRefGoogle Scholar
  35. Hazel CM, Patel S (2004) Influence of processing on trichothecene levels. Toxicol Lett 153:51–59CrossRefGoogle Scholar
  36. He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843CrossRefGoogle Scholar
  37. Hohn TM, Beremand PD (1989) Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79:131–138CrossRefGoogle Scholar
  38. Hohn TM, Krishna R, Proctor RH (1999) Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol 26:224–235CrossRefGoogle Scholar
  39. Ilgen P, Hadeler B, Maier FJ, Schäfer W (2009) Developing Kernel and Rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Mol Plant-Microbe Int 22(8):899–908CrossRefGoogle Scholar
  40. Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA 102:16892–16897CrossRefGoogle Scholar
  41. Jiao F, Kawakami A, Nakajima T (2008) Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol Lett 285:212–219CrossRefGoogle Scholar
  42. Joffe AZ, Lisker N (1969) Effect of light, temperature, and pH value on aflatoxin production in vitro. Appl Microbiol 18:517–518Google Scholar
  43. Kachroo A, He Z, Patkar R, Zhu Q, Zhong J, Li D, Ronald P, Lamb C, Chattoo BB (2003) Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res 12:577–586CrossRefGoogle Scholar
  44. Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathol 87(6):643–648CrossRefGoogle Scholar
  45. Kim H, Woloshuk CP (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 45:947–953CrossRefGoogle Scholar
  46. Kim H, Han K, Kim K, Han D, Jahng K, Chae K (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80CrossRefGoogle Scholar
  47. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123CrossRefGoogle Scholar
  48. Kuge S, Jones N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16:1710–1720CrossRefGoogle Scholar
  49. Kuge S, Toda T, Iizuka N, Nomoto A (1998) Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3:521–532CrossRefGoogle Scholar
  50. Kumar L, Breakspear A, Kistler C, Ma L-J, Xie X (2010) Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes. BMC Genomics 11:208CrossRefGoogle Scholar
  51. Lee T, Han K-H, Kim K-H, Yun S-H, Lee Y-W (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154CrossRefGoogle Scholar
  52. Liu Y, He Q, Cheng P (2003) Photoreception in Neurospora: a tale of two white collar proteins. Cell Mol Life Sci 60:2131–2138CrossRefGoogle Scholar
  53. Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974CrossRefGoogle Scholar
  54. Martin JF, Casqueiro J, Kosalkova K, Marcos AT, Gutierrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeunwenhoek 75:21–21CrossRefGoogle Scholar
  55. Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32Google Scholar
  56. McCormick SP, Alexander NJ (2002) Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol 68:2959–2964CrossRefGoogle Scholar
  57. McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70:2044–2051CrossRefGoogle Scholar
  58. Merhej J, Boutigny AL, Pinson-Gadais L, Richard-Forget F, Barreau C (2010) Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:710–717Google Scholar
  59. Merhej J, Richard-Forget F, Barreau C (2011a) The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 48(3):275–284CrossRefGoogle Scholar
  60. Merhej J, Urban M, Dufresne M, Hammond-Kosack K, Richard-Forget F, Barreau C (2011b) The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenecity in Fusarium graminearum. Mol Plant Pathol (in press)Google Scholar
  61. Mihlan M, Homann V, Liu T, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991CrossRefGoogle Scholar
  62. Miller SS, Chabot DMP, Ouellet T, Harris LJ, Fedak G (2004) Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can J Plant Pathol 26:453–463CrossRefGoogle Scholar
  63. Myung K, Li S, Butchko RA, Busman M, Proctor RH, Abbas HK, Calvo AM (2009) FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J Agric Food Chem 57:5089–5094CrossRefGoogle Scholar
  64. Nozoe S, Machida Y (1970) Structure of trichodiene. Tetrahedron Lett 11:2671–2674CrossRefGoogle Scholar
  65. Parry DW, Jenkinson P, McLEOD L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238CrossRefGoogle Scholar
  66. Peňalva MA, Arst HN Jr (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446CrossRefGoogle Scholar
  67. Peňalva MA, Arst HN Jr (2004) Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 58:425–451CrossRefGoogle Scholar
  68. Peňalva MA, Tilburn J, Bignell E, Arst HN Jr (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300CrossRefGoogle Scholar
  69. Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN (2003a) Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol 69:5935–5940CrossRefGoogle Scholar
  70. Peplow A, Tag A, Garifullina G, Beremand M (2003b) Identification of new genes positively regulated by tri10 and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol 69:2731–2736CrossRefGoogle Scholar
  71. Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam 24:1–13Google Scholar
  72. Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8:39–69Google Scholar
  73. Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153:61–73CrossRefGoogle Scholar
  74. Ponts N, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2006) Accumulation of deoxynivalenol and its 15-Acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett 258(1):102–7CrossRefGoogle Scholar
  75. Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T (2007) Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett 581:443–447CrossRefGoogle Scholar
  76. Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2009) Fusarium response to osidative stress by H2O2 in trichothecene chemotype-dependent. FEMS Microbiol Lett 293:255–262CrossRefGoogle Scholar
  77. Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601CrossRefGoogle Scholar
  78. Prusky D, Yakobi N (2003) Pathogenic fungi leading or led by ambient pH? Mol Plant Pathol 4(6):509–516CrossRefGoogle Scholar
  79. Reverberi M, Zjalic A, Fabbri AA, Fanelli C (2006) Oxidant/antioxidant balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Research 22:39–47CrossRefGoogle Scholar
  80. Rodrigues-Pousada CA, Nevitt T, Menezes R, Azevedo D, Pereira J, Amaral C (2004) Yeast activator proteins and stress response: an overview. FEBS Lett 567:80–85CrossRefGoogle Scholar
  81. Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17CrossRefGoogle Scholar
  82. Ruijter GJG, Visser J (1997) Carbon repression in aspergilli. FEMS Microbiol Lett 151:103–114CrossRefGoogle Scholar
  83. Sarikaya-Bayram S, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6(12):e1001226CrossRefGoogle Scholar
  84. Schmitt EK, Kempken R, Kuck U (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics 265:508–518CrossRefGoogle Scholar
  85. Seong KY, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu JR, Kistler HC (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol 72:354–367CrossRefGoogle Scholar
  86. Spröte P, Brakhage AA (2007) The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol 188:69–79CrossRefGoogle Scholar
  87. Strub C, Pocaznoi D, Lebrihi A, Fournier R, Mathieu F (2010) Influence of barley malting operating parameters on T-2 and HT-2 toxinogenesis of Fusarium langsethiae, a worrying contaminant of malting barley in Europe. Food Addit Contam 27:1247–1252CrossRefGoogle Scholar
  88. Suarez T, Peňalva MA (1996) Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20:529–540CrossRefGoogle Scholar
  89. Tag AG, Garifullina GF, Peplow AW, Ake C Jr, Phillips TD, Hohn TM, Beremand MN (2001) A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol 67:5294–5302CrossRefGoogle Scholar
  90. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peňalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790Google Scholar
  91. Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277CrossRefGoogle Scholar
  92. Torp M, Nirenberg HI (2004) Fusarium langsethiae sp. nov. on cereals in Europe. Int J Food Microbiol 95:247–256CrossRefGoogle Scholar
  93. Walter S, Nicholson P, Doohan FM (2009) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66CrossRefGoogle Scholar
  94. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpt H-U, Tudzynski B (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77(4):972–94Google Scholar
  95. Windels C (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the northern Great Plains. Phytopathol 90(1):17–21CrossRefGoogle Scholar
  96. Wood M (2002) Gene jockey fight Fusarium head blight. Agric Res 50:12–13Google Scholar
  97. Yager LN (1992) Eearly developmental events during asexual and sexual sporulation in Aspergillus nidulans. In: Bennett JW, Klich MA (eds) Aspergillus: biology and industrial applications. Butterworth-Heinemann, Boston, pp 19–41Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jawad Merhej
    • 1
  • Florence Richard-Forget
    • 1
  • Christian Barreau
    • 2
  1. 1.INRA, UR1264 MycSAVillenave d’OrnonFrance
  2. 2.CNRS, UR1264 INRA, MycSAVillenave d’OrnonFrance

Personalised recommendations