Applied Microbiology and Biotechnology

, Volume 91, Issue 2, pp 265–286 | Cite as

Progress on plague vaccine development

  • Jason A. Rosenzweig
  • Olufisayo Jejelowo
  • Jian Sha
  • Tatiana E. Erova
  • Sheri M. Brackman
  • Michelle L. Kirtley
  • Cristina J. van Lier
  • Ashok K. Chopra
Mini-Review

Abstract

Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person–person transmission and rapid death if left untreated (50–90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.

Keywords

Plague Vaccine Yersinia pestis Bubonic Septicemic Pneumonic plague 

References

  1. Achtman M, Zurth K, Morelli G, TorreaG GA, Carniel E (1999) Yersina pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048Google Scholar
  2. Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, Baze WB, Suarez G, Peterson JW, Chopra AK (2008) Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology 154:1939–1948Google Scholar
  3. Agar SL, Sha J, Baze WB, Erova TE, Foltz SM, Suarez G, Wang S, Chopra AK (2009a) Deletion of Braun lipoprotein gene (lpp) and curing of plasmid pPCP1 dramatically alter the virulence of Yersinia pestis CO92 in a mouse model of pneumonic plague. Microbiology 155:3247–3259Google Scholar
  4. Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, Baze WB, Suarez G, Peterson JW, Chopra AK (2009b) Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92. Microbes Infect 11:205–214Google Scholar
  5. Airharta CL, Rohdea HN, Hovdea CJ, Bohacha GA, Deobalda CF, Leeb SS, Minnich SA (2008) Lipid A mimetics are potent adjuvants for an intranasal pneumonic plague vaccine. Vaccine 26:5554–5561Google Scholar
  6. Alibek K, Handelman S (2000) Biohazard: the chilling true story of the largest covert biological weapons program in the world—told from inside by the man who ran it. Random House, New YorkGoogle Scholar
  7. Alvarez ML, Cardineau GA (2010) Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv 28:184–196Google Scholar
  8. Alvarez ML, Pinyerd HL, Topal E, Cardineau GA (2008) P19-dependent and P19-independent reversion of F1-V gene silencing in tomato. Plant Mol Biol 68:61–79Google Scholar
  9. Alvarez ML, Topal E, Martin F, Cardineau GA (2010) Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant Mol Biol 72:75–89Google Scholar
  10. Amemiya K, Meyers JL, Rogers TE, Fast RL, Bassett AD, Worshama PL, Powell BS, Norris SL, Krieg AM, Adamovicz JJ (2009) CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague. Vaccine 27:2220–2229Google Scholar
  11. Andrews GP, Strachan ST, Benner GE, Sample AK, Anderson GW Jr, Adamovicz JJ, Welkos SL, Pullen JK, Friedlander AM (1999) Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and nonencapsulated Yersinia pestis. Infect Immun 67:1533–1537Google Scholar
  12. Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 76:3640–3650Google Scholar
  13. Bashaw J, Norris S, Weeks S, Trevino S, Adamovicz JJ, Welkos S (2007) Development of in vitro correlate assays of immunity to infection with Yersinia pestis. Clin Vaccine Immunol 14:605–616Google Scholar
  14. Bhattacharya D, Mecsas J, Hu LT (2010) Development of a vaccinia virus based reservoir-targeted vaccine against Yersinia pestis. Vaccine 28:7683–7689Google Scholar
  15. Blisnick T, Ave P, Huerre M, Carniel E, Demeure CE (2008) Oral vaccination against bubonic plague using a live avirulent Yersinia pseudotuberculosis strain. Infect Immun 76:83808–83816Google Scholar
  16. Bozue J, Mou S, Moody KL, Cote CK, Trevino S, Fritz D, Worsham P (2011) The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Microb Pathog 50:314–321Google Scholar
  17. Boyer JL, Sofer-Podesta C, Ang J, Hackett NR, Chiuchiolo MJ, Senina S, Perlin D, Crystal RG (2010) Protective immunity against a lethal respiratory Yersinia pestis challenge induced by V antigen or the F1 capsular antigen incorporated into adenovirus capsid. Hum Gene Ther 21:891–901Google Scholar
  18. Branger CG, Sun W, Torres-Escobar A, Perry R, Roland KL, Fetherston J, Curtiss R III (2010) Evaluation of Psn HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge. Vaccine 29:274–282Google Scholar
  19. Branger CG, Torres-Escobar A, Sun W, Perry R, Fetherston J, Roland KL, Curtiss R III (2009) Oral vaccination with LcrV from Yersinia pestis KIM delivered by live attenuated Salmonella enterica serovar Typhimurium elicits a protective immune response against challenge with Yersinia pseudotuberculosis and Yersinia enterocolitica. Vaccine 27:5363–5370Google Scholar
  20. Brewoo JN, Powell TD, Stinchcomb DT, Osorio JE (2010) Efficacy and safety of a modified vaccinia Ankara (MVA) vectored plague vaccine in mice. Vaccine 28:5891–5899Google Scholar
  21. Brubaker RR, Beesley ED, Surgalla MJ (1965) Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149:422–424Google Scholar
  22. Carrillo-Conde B, Schiltz E, Yu J, Minion FC, Phillips GJ, Wannemuehler MJ, Narasimhan B (2010) Encapsulation into amphiphilic polyanhydride microparticles stabilizes Yersinia pestis antigens. Acta Biomater 6:3110–3119Google Scholar
  23. Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci 103:13514–13519Google Scholar
  24. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux D, Elliott JM, Derbise A, Hauser LJ, Garcia E (2004) Insights into the evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci 101:13826–13831Google Scholar
  25. Chattopadhyaya A, Park S, Delmas G, Suresh R, Senina S, Perlin DS, Rose JK (2008) Single-dose, virus-vectored vaccine protection against Yersinia pestis challenge: CD4+ cells are required at the time of challenge for optimal protection. Vaccine 26:6329–6337Google Scholar
  26. Chen TH, Meyer KF (1974) Susceptibility and antibody response of Rattus species to experimental plague. J Infect Dis 129(Suppl):S53–S61Google Scholar
  27. Chichester JA, Musiychuk K, Farrance CE, Mett V, Lyons J, Mett V, Yusibov Y (2009) A single component two-valent LcrV–F1 vaccine protects non-human primates against pneumonic plague. Vaccine 27:3471–3474Google Scholar
  28. Chiuchiolo MJ, Boyer JL, Krause A, Senina S, Hackett NR, Crystal RG (2006) Protective immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenovirus-based vaccine vector expressing V antigen. J Infect Dis 194:1249–1257Google Scholar
  29. Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Ann Rev Microbiol 54:735–774Google Scholar
  30. Cornelius CA, Quenee LE, Overheim KA, Koster F, Brasel TL, Elli D, Ciletti NA, Schneewind O (2008) Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague. Infect Immun 76:5588–5597Google Scholar
  31. Cully JF Jr, Williams ES (2001) Interspecific comparisons of sylvatic plague in prairie dogs. J Mammal 82:894–905Google Scholar
  32. Davis KJ, Fritz DL, Pitt ML, Welkos SL, Worsham PL, Friedlander AM (1996) Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative Yersinia pestis in African green monkeys (Cercopithecus aethiops). Arch Pathol Lab Med 120:156–163Google Scholar
  33. Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev. doi:10.1111/j.1574-6976.2011.00271.x
  34. Del Prete G, Santi L, Andrianaivoarimanana V, Amedei A, Domarle O, D’ Elios MM, Arntzen CJ, Rahalison L, Mason HS (2009) Plant-derived recombinant F1, V, and F1-V fusion antigens of Yersinia pestis activate human cells of the innate and adaptive immune system. Int J Immunopathol Pharmacol 22:133–143Google Scholar
  35. del Rio B, Fuente JL, Neves V, Dattwyler R, Seegers JF, Gomes-Solecki M (2010) Platform technology to deliver prophylactic molecules orally: an example using the Class A select agent Yersinia pestis. Vaccine 28:6714–6722Google Scholar
  36. Deng W, Burland V, Plunkett G 3rd, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, Schwartz DC, Fetherston JD, Lindler LE, Brubaker RR, Plano GV, Straley SC, McDonough KA, Nilles ML, Matson JS, Blattner FR, Perry RD (2002) Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611Google Scholar
  37. Do Y, Koh H, Park CG, Dudziak D, Seo P, Mehandru S, Choi JH, Cheong C, Park S, Perlin DS, Powell BS, Steinman RM (2010) Targeting of LcrV virulence protein from Yersinia pestis to dendritic cells protects mice against pneumonic plague. Eur J Immunol 40:2791–2796Google Scholar
  38. Donavan JE, Ham D, Fukui GM, Surgalla MJ (1961) Role of the capsule of Pasterella pestis in bubonic plague in the guinea pig. J Infect Dis 109:154–157Google Scholar
  39. Du Y, Rosqvist R, Forsberg A (2002) Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 70:1453–1460Google Scholar
  40. Dulebohn D, Choy J, Sundermeier T, Okan N, Karzai AW (2007) Trans-translation: the tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay. Biochemistry 46:4681–4693Google Scholar
  41. Evans RG, Crutcher JM, Shadel B, Clements B, Bronze MS (2002) Terrorism from a public health perspective. Am J Med Sci 323:291–298Google Scholar
  42. Fadl AA, Sha J, Klimpel GR, Olano JP, Niesel DW, Chopra AK (2005a) Murine lipoprotein is a critical outer membrane component involved in Salmonella enterica serovar Typhimurium systemic infection. Infect Immun 73:1081–1096Google Scholar
  43. Fadl AA, Sha J, Klimpel GR, Olano JP, Galindo CL, Chopra AK (2005b) Attenuation of Salmonella enterica serovar Typhimurium by altering biological functions of murine lipoprotein and lipopolysaccharide. Infect Immun 73:8433–8436Google Scholar
  44. Feodorova VA, Pan’kina LN, Savostina EP, Sayapina LV, Motin VL, Dentovskaya SV, Shaikhutdinova RZ, Ivanov SA, Lindner B, Kondakova AN, Bystrova OV, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA, Anisimov AP (2007) A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs. Vaccine 25:7620–7628Google Scholar
  45. Feodorova VA, Pan’kina LN, Savostina EP, Kuznetsov OS, Konnov NP, Sayapina LV, Dentovskaya SV, Shaikhutdinova RZ, Ageev SA, Lindner B, Kondakova AN, Bystrova OV, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA, Anisimov AP, Motin VL (2009) Pleiotropic effects of the lpxM mutation in Yersinia pestis resulting in modification of the biosynthesis of major immunoreactive antigens. Vaccine 27:2240–2250Google Scholar
  46. Ferber DM, Brubaker RR (1979) Mode of action of pesticin: N-acetylglucosaminidase activity. J Bacteriol 139:495–501Google Scholar
  47. Filippov AA, Solodovnikov NS, Kookleva LM, Protsenko OA (1990) Plasmid content in Yersinia pestis strains of different origin. FEMS Microbiol Lett 55:45–48Google Scholar
  48. Friedlander AM, Welkos SL, Worsham PL, Andrews GP, Heath DG, Anderson GW Jr, Pitt ML, Step JE, Davis K (1995) Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis. Clin Infect Dis 21(Suppl 2):S178–S181Google Scholar
  49. Galen JE, Nair J, Wang JY, Wasserman SS, Tanner MK, Sztein MB, Levine MM (1999) Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect Immun 67:6424–6433Google Scholar
  50. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. New Eng J Med 337:677–680Google Scholar
  51. Galindo CL, Moen ST, Kozlova EV, Sha J, Garner HR, Agar SL, Chopra AK (2009) Comparative analyses of transcriptional profiles in mouse organs in a pneumonic plague model after infection with wild-type Yersinia pestis CO92 and its Braun lipoprotein mutant. Comp Funct Genomics 2009:914762Google Scholar
  52. Galindo CL, Sha J, Moen ST, Agar SL, Kirtley ML, Foltz SM, McIver LJ, Kozlova EV, Garner HR, Chopra AK (2010) Comparative global gene expression profiles of wild-type Yersinia pestis CO92 and its Braun lipoprotein mutant at flea and human body temperatures. Comp Funct Genomics 2010:342168Google Scholar
  53. Galvan EM, Mohan Nair MK, Chen H, Del Piero F, Schifferli DM (2010) Biosafety level 2 model of pneumonic plague and protection studies with F1 and Psa. Infect Immun 78:3443–3453Google Scholar
  54. Gendlina I, Held KG, Bartra SS, Gallis BM, Doneanu CE, Goodlett DR, Plano GV, Collins CM (2007) Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Mol Microbiol 64:1214–1227Google Scholar
  55. Goodin JL, Powell BS, Enama JT, Raab RW, McKown RL, Coffman GL, Andrews GP (2010) Purification and characterization of a recombinant Yersinia pestis V-F1 “Reversed” fusion protein for use as a new subunit vaccine against plague. Protein Expr Purif 76:136–144Google Scholar
  56. Greenfield RA, Drevets DA, Machado LJ, Voskuhl GW, Cornea P, Bronze MS (2002) Bacterial pathogens as biological weapons and agents of bioterrorism. Am J Med Sci 323:299–315Google Scholar
  57. Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, Courvalin P, Carniel E (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7:43–48Google Scholar
  58. Gupta G, Khan AA, Rao DN (2010) Cell-mediated immune response and Th1⁄Th2 cytokine profile of B-T constructs of F1 and V antigen of Yersinia pestis. Scand J Immunol 71:186–198Google Scholar
  59. Heymann DL (2005) Emerging and re-emerging infectious diseases from plague and cholera to Ebola and AIDS: a potential for international spread that transcends the defenses of any single country. J Contig Crisis Manag 13:29Google Scholar
  60. Hill J, Leary S, Smither S, Besta A, Pettersson J, Forsberg A, Lingard B, Lipka A, Brown KA, Williamson ED, Titball RW (2009) N255 is a key residue for recognition by a monoclonal antibody which protects against Yersinia pestis infection. Vaccine 27:7073–7079Google Scholar
  61. Hinnebusch BJ, Fischer ER, Schwan TG (1998) Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J Infect Dis 178:1406–1415Google Scholar
  62. Huang XZ, Nikolich MP, Lindler LE (2006) Current trends in plague research: from genomics to virulence. Clin Med Res 4:189–199Google Scholar
  63. Huang J, D’Souza AJ, Alarcon JB, Mikszta JA, Ford BM, Ferriter MS, Evans M, Stewart T, Amemiya K, Ulrich RG, Sullivan VJ (2009) Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine. Clin Vaccine Immunol 16:719–725Google Scholar
  64. Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Koerner JF, Layton M, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Schoch-Spana M, Tonat K (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 283:2281–2290Google Scholar
  65. Ivanov MI, Noel BL, Rampersaud R, Mena P, Benach JL, Bliska JB (2008) Vaccination of mice with a Yop translocon complex elicits antibodies that are protective against infection with F1 Yersinia pestis. Infect Immun 76:5181–5190Google Scholar
  66. Jawetz E, Meyer KF (1944) The behavior of virulent and avirulent P. pestis in normal and immune experimental animals. J Infect Dis 74:1Google Scholar
  67. Jones SM, Griffin KF, Hodgson I, Williamson ED (2003) Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine 21:3912–3918Google Scholar
  68. Jones A, Bosioa C, Duffy A, Goodyear A, Schriefer M, Dow S (2010) Protection against pneumonic plague following oral immunization with a non-replicating vaccine. Vaccine 28:5924–5929Google Scholar
  69. Karzai AW, Roche ED, Sauer RT (2000) The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449–455Google Scholar
  70. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70:4092–4098Google Scholar
  71. Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151Google Scholar
  72. Kim TJ, Chauhan S, Motin VL, Goh EB, Igo MM, Young GM (2007) Direct transcriptional control of the plasminogen activator gene of Yersinia pestis by the cyclic AMP receptor protein. J Bacteriol 189:8890–8900Google Scholar
  73. Kingston R, Burke F, Robinson JH, Bedford PA, Jones SM, Knight SC, Williamson ED (2007) The fraction 1 and V protein antigens of Yersinia pestis activate dendritic cells to induce primary T cell responses. Clin Exp Immunol 149:561–569Google Scholar
  74. Kolodziejek AM, Schnider DR, Rohde HN, Wojtowicz AJ, Bohach GA, Minnich SA, Hovde CJ (2010) Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on LPS core length. Infect Immun 78:5233–5243Google Scholar
  75. Koster F, Perlin DS, Park S, Brasel T, Gigliotti A, Barr E, Myers L, Layton RC, Sherwood R, Lyons CR (2010) Milestones in progression of primary pneumonic plague in cynomolgus macaques. Infect Immun 78:2946–2955Google Scholar
  76. Lathem WW, Price PA, Miller VL, Goldman WE (2007) A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 315:509–513Google Scholar
  77. Lawal A, Jejelowo O, Chopra AK, Rosenzweig JA (2010) Ribonucleases and bacterial virulence (minireview). Microbial Biotech. doi:1111/j.1751-7915.2010.00212X
  78. Ligon BL (2006) Plague: a review of its history and potential as a biological weapon. Semin Pediatr Infect Dis 17:161–170Google Scholar
  79. Little SF, Webster WM, Wilhelm H, Fisher D, Norris SLW, Powell BS, Enama J, Adamovicz JJ (2010) Quantitative anti-F1 and anti-V IgG ELISAs as serological correlates of protection against plague in female Swiss Webster mice. Vaccine 28:934–939Google Scholar
  80. Liu T, König R, Sha J, Agar SL, Tseng CT, Klimpel GR, Chopra AK (2008) Immunological responses against Salmonella enterica serovar Typhimurium Braun lipoprotein and lipid A mutant strains in Swiss-Webster mice: potential use as live-attenuated vaccines. Microb Pathog 44:224–237Google Scholar
  81. Liu T, Agar SL, Sha J, Chopra AK (2010) Deletion of Braun lipoprotein gene (lpp) attenuates Yersinia pestis KIM/D27 strain: role of Lpp in modulating NF-kB activation and host cell death. Microb Pathog 48:42–52Google Scholar
  82. McDonough KA, Barnes AM, Quan TJ, Montenieri J, Falkow S (1993) Mutation in the pla gene of Yersinia pestis alters the course of the plague bacillus–flea (Siphonaptera: Ceratophyllidae) interaction. J Med Entomol 30:772–780Google Scholar
  83. Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO, Hantgan RR, Thomas MJ, Wood J, Bell B (2009) Flagellin–F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol 16:21–28Google Scholar
  84. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter RJ, Goguen JD, Lien E (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066–1073Google Scholar
  85. Murphy BS, Wulff CR, Garvy BA, Straley SC (2007) Yersinia pestis YadC: a novel vaccine candidate against plague. Adv Exp Med Biol 603:400–414Google Scholar
  86. Okan NA, Mena P, Benach JL, Bliska JB, Karzail AW (2010) The smpB–ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague. Infection Infect Immun 78:1284–1293Google Scholar
  87. Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, Wren BW (2000) The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68:3419–3425Google Scholar
  88. Oyston PCF, Mellado-Sanchez G, Pasetti MF, Nataro JP, Titball RW, Atkins HS (2010) A Yersinia pestis guaBA mutant is attenuated in virulence and provides protection against plague in a mouse model of infection. Microb Pathog 48:191–195Google Scholar
  89. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeño-Tárraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PC, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527Google Scholar
  90. Pearson GS (1998) The threat of deliberate disease in the 21st century. Henry L. Stimson Centre report no. 24. Biological weapons proliferation: reasons for concern, courses of action. Available from: http://www.brad.ac.uk/acad/sbtwc/other/disease.htm
  91. Perry RD, Fetherson JD (1997) Yersinia pestis—etiological agent of plague. Clin Microbiol Rev 10:35–66Google Scholar
  92. Perry RD, Straley SC, Fetherston JD, Rose DJ, Gregor J, Blattner FR (1998) DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 66:4611–4623Google Scholar
  93. Peterson JW, Walberg KG, Pawlik J, Bush K, Taormina J, Hardcastle J, Moen S, Thomas J, Lawrence W, Ponce C, Parham T, Chatuev BM, Sower L, Klimpel G, Eaves-Pyles T, Chopra AK (2010) Evaluation of protection afforded by fluoroquinolones against respiratory infections with Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Open Microbiology Journal 4:34–46Google Scholar
  94. Pouliot K, Pan N, Wang S, Lu S, Lien E, Goguen JD (2007) Evaluation of the role of LcrV—toll-like receptor 2-mediated immunomodulation in the virulence of Yersinia pestis. Infect Immun 75:3571–3580Google Scholar
  95. Qia Z, Zhou L, Zhanga Q, Ren L, Daia R, Wuc B, Wang T, Zhu Z, Yang Y, Cuia B, Wanga Z, Wang H, Qiu Y, Guo Z, Yang R, Wang X (2010) Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1 + rV270. Vaccine 28:1655–1660Google Scholar
  96. Qiu Y, Liu Y, Qi Z, Wang W, Kou Z, Zhang Q, Liu G, Liu T, Yang Y, Yang X, Xin Y, Li C, Cui B, Huang S, Liu H, Zeng L, Wang Z, Yang R, Wang H, Wang X (2010) Comparison of immunological responses of plague vaccines F1 + rV270 and EV76 in chinese-origin rhesus macaque, Macaca mulatta. Scand J Immunol 72:425–433Google Scholar
  97. Quenee LE, Cornelius CA, Ciletti NA, Elli D, Schneewind O (2008) Yersinia pestis caf1 variants and the limits of plague vaccine protection. Infect Immun 76:2025–2036Google Scholar
  98. Quenee LE, Berube BJ, Segal J, Elli D, Ciletti NA, Anderson D, Schneewind O (2010) Amino acid residues 196–225 of LcrV represent a plague protective epitope. Vaccine 28:1870–1876Google Scholar
  99. Ramirez K, Capozzo AVE, Lloyd SA, Sztein MB, Nataro JP, Pasetti MF (2009) Mucosally delivered Salmonella Typhi expressing the Yersinia pestis F1 antigen elicits mucosal and systemic immunity early in life and primes the neonatal immune system for a vigorous anamnestic response to parenteral F1 boost. J Immunol 182:1211–1222Google Scholar
  100. Ramirez K, Ditamo Y, Rodriguez L, Picking WL, van Roosmalen ML, Leenhouts K, Pasetti MF (2010) Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection. Mucosal Immunol 3:159–171Google Scholar
  101. Reithmeier-Rost D, Hill J, Elvin SJ, Williamson D, Dittmann S, Schmid A, Wilharm G, Sing A (2007) The weak interaction of LcrV and TLR2 does not contribute to the virulence of Yersinia pestis. Microbes Infect 9:997–1002Google Scholar
  102. Ren J, Dong D, Zhang J, Zhang J, Liu S, Li B, Fu L, Xu J, Yu C, Hou L, Li J, Chen W (2009) Protection against anthrax and plague by a combined vaccine in mice and rabbits. Vaccine 27:7436–7441Google Scholar
  103. Riedel S (2005) Plague: from natural disease to bioterrorism. BUMC Proc 18:116–124Google Scholar
  104. Rigano MM, Manna C, Giulini A, Vitale A, Cardi T (2009) Plants as biofactories for the production of subunit vaccines against bio-security-related bacteria and viruses. Vaccine 27:3463–3466Google Scholar
  105. Rocke TE, Smith SR, Stinchcom DT, Osorio JE (2008) Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits. J Wildl Dis 44:930–937Google Scholar
  106. Rocke TE, Iams KP, Dawe S, Smith SR, Williamson JL, Heisey DM, Osorio JE (2010a) Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis). Vaccine 28:338–344Google Scholar
  107. Rocke TE, Pussini N, Smith SR, Williamson J, Powell B, Osorio JE (2010b) Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus). Vector Borne Zoonotic Dis 10:53–58Google Scholar
  108. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Alpuche-Solis AG, Martinez-Gonzalez L, Korban SS (2010a) Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta 232:409–416Google Scholar
  109. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Han Y, Alpuche-Solís AG, Korban SS (2010b) Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinia pestis are immunogenic in mice. J Plant Physiol 168:174–180Google Scholar
  110. Rosenzweig JA, Weltman G, Plano GV, Schesser K (2005) Modulation of Yersinia’s type three secretion system by the S1 domain of polynucleotide phosphorylase. J Biol Chem 7(280):156Google Scholar
  111. Rosenzweig JA, Chromy B, Echeverry A, Yang J, Adkins B, Plano GV, McCutchen-Maloney S, Schesser K (2007) Polynucleotide phosphorylase independently controls virulence factor expression levels and export in the yersiniae. FEMS Microbiol Lett 270:255–264Google Scholar
  112. Samoilova SV, Samoilova LV, Yezhov IN, Drozdov IG, Anisimov AP (1996) Virulence of pPst+ and pPst strains of Yersinia pestis for guinea-pigs. J Med Microbiol 45:440–444Google Scholar
  113. Sebbane F, Gardner D, Long D, Gowen BB, Hinnebusch BJ (2005) Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol 166:1427–1439Google Scholar
  114. Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ (2006) Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci 103:5526–5530Google Scholar
  115. Sha J, Fadl AA, Klimpel GR, Niesel DW, Popov VL, Chopra AK (2004) The two murine lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 72:3987–4003Google Scholar
  116. Sha J, Pillai L, Fadl AA, Erova TE, Galindo CL, Chopra AK (2005) The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infect Immun 73:6446–6457Google Scholar
  117. Sha J, Agar SL, Baze WB, Olano JP, Fadl AA, Erova TE, Wang S, Foltz SM, Suarez G, Motin VL, Chauhan S, Klimpel GR, Peterson JW, Chopra AK (2008) Braun lipoprotein (Lpp) contributes to the virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague. Infect Immun 76:1390–1409Google Scholar
  118. Sha J, Endsley JJ, Kirtley ML, Foltz SM, Huante MB, Erova TE, Kozlova EV, Popov VL, Yeager LA, Zudina IV, Motin VL, Peterson JW, Chopra AK (2011) Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of the sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol 49:1708–1715Google Scholar
  119. Simonet M, Berche P, Mazigh D, Veron M (1985) Protection against Yersina infection induced by non-virulence-plasmid-encoded antigens. J Med Microbiol 20:225–231Google Scholar
  120. Smiley ST (2008a) Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines 7:209–221Google Scholar
  121. Smiley ST (2008b) Immune defense against pneumonic plague. Immunol Rev 225:256–271Google Scholar
  122. Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD (1992) A surface protease and the invasive character of plague. Science 258:1004–1007Google Scholar
  123. Sofer-Podesta C, Ang J, Hackett NR, Senina S, Perlin D, Crystal RG, Boyer JL (2009) Adenovirus-mediated delivery of an anti-V antigen monoclonal antibody protects mice against a lethal Yersinia pestis challenge. Infect Immun 4:1561–1568Google Scholar
  124. Straley SC, Brubaker RR (1982) Localization in Yersinia pestis of peptides associated with virulence. Infect Immun 36:129–135Google Scholar
  125. Suleyman F, Tsang TM, Krukonis ES (2010) Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 78:4134–4150Google Scholar
  126. Sun W, Roland KL, Branger CG, Kuang X, Curtiss R III (2009) The role of relA and spoT in Yersinia pestis KIM5+ pathogenicity. PLoS One 4(8):e6720. doi:10.1371/journal.pone.0006720 Google Scholar
  127. Sun W, Roland KL, Kuang X, Branger CG, Curtiss R III (2010) Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague. Infect Immun 78:1304–1313Google Scholar
  128. Sun W, Six D, Kuang X, Roland KL, Raetz CRH, Curtiss R III (2011) A live attenuated strain of Yersinia pestis KIM as a vaccine against plague. Vaccine 29:2986–2998Google Scholar
  129. Suomalainen M, Haiko J, Ramu P, Lobo L, Kukkonen M, Westerlund-Wikström B, Virkola R, Lähteenmäki K, Korhonen TK (2007) Using every trick in the book: the Pla surface protease of Yersinia pestis. Adv Exp Med Biol 603:268–278Google Scholar
  130. Szaba FM, Kummer LW, Wilhelm LB, Lin JS, Parent MA, Montminy-Paquette SW, Lien E, Johnson LL, Smiley ST (2008) D27-pLpxL, an avirulent strain of Yersinia pestis, primes T cells that protect against pneumonic plague. Infect Immun 77:4295–4304Google Scholar
  131. Taylor VL, Titball RW, Oyston PCF (2005) Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151:1919–1926Google Scholar
  132. Thomas RJ, Webber D, Collinge A, Stagg AJ, Bailey SC, Nunez A, Gates A, Jayasekera PN, Taylor RR, Eley S, Titball RW (2009) Different pathologies but equal levels of responsiveness to the recombinant F1 and V antigen vaccine and ciprofloxacin in a murine model of plague caused by small- and large-particle aerosols. Infect Immun 77:315–1323Google Scholar
  133. Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, Mamroud E (2009) The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PLoS One 4(9):e7023Google Scholar
  134. Titball RW, Williamson ED (2004) Yersinia pestis (plague) vaccines. Expert Opin Biol Ther 4:965–973Google Scholar
  135. Torres-Escobar A, Juárez-Rodríguez MD, Curtiss R III (2009) Biogenesis of Yersinia pestis PsaA in recombinant attenuated Salmonella Typhimurium vaccine (RASV) strain. FEMS Microbiol Lett 302:106–113Google Scholar
  136. Torres-Escobar A, Juárez-Rodríguez MD, Branger CG, Curtiss R III (2010a) Evaluation of the humoral immune response in mice orally vaccinated with live recombinant attenuated Salmonella enterica delivering a secreted form of Yersinia pestis PsaA. Vaccine 27:5363–5370Google Scholar
  137. Torres-Escobar A, Juárez-Rodríguez MD, Gunn BM, Branger CG, Tinge SA, Curtiss R III (2010b) Fine-tuning synthesis of Yersinia pestis LcrV from runaway-like replication balanced-lethal plasmid in a Salmonella enteric serovar Typhimurium vaccine induces protection against a lethal Y. pestis challenge in mice. Infect Immun 78:2529–2543Google Scholar
  138. Uppada JB, Khan AA, Bhat EA, Deshmukh R, Rao DN (2009) Humoral immune responses and protective efficacy of sequential B- and T-cell epitopes of V antigen of Yersinia pestis by intranasal immunization in microparticles. Med Microbiol Immunol 198:247–256Google Scholar
  139. Van Blarcom TJ, Sofer-Podesta C, Ang J, Boyer JL, Crystal RG, Georgiou G (2010) Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge. Gene Ther 17:913–921Google Scholar
  140. Vernazza C, Lingard B, Flick-Smith HC, Baillie LWJ, Hill J, Atkins HS (2009) Small protective fragments of the Yersinia pestis V antigen. Vaccine 27:2775–2780Google Scholar
  141. Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89Google Scholar
  142. Wake A, Morita H, Wake M (1978) Mechanisms of long and short term immunity to plague. Immunology 34:1045–1052Google Scholar
  143. Wang S, Oshi S, Mboudjeka I, Liu F, Ling T, Goguen JD, Lu S (2008) Relative immunogenicity and protection potential of candidate Yersinia pestis antigens against lethal mucosal plague challenge in Balb/c mice. Vaccine 26:1664–1674Google Scholar
  144. Wang S, Mboudjeka I, Goguen JD, Lu S (2010a) Antigen engineering can play a critical role in the protective immunity elicited by Yersinia pestis DNA vaccines. Vaccine 28:2011–2019Google Scholar
  145. Wang Z, Zhou L, Qi Z, Zhang Q, Dai R, Yang Y, Cui B, Wang H, Yang R, Wang X (2010b) Long-term observation of subunit vaccine F1-rV270 against Yersinia pestis in mice. Clin Vaccine Immunol 17:199–201Google Scholar
  146. Warren R, Lockman H, Barnewall R, Krile R, Blanco OB, Vasconcelos D, Price J, House RV, Bolanowksi MA, Fellows P (2011) Cynomolgus macaque model for pneumonic plague. Microb Pathog 50:12–22Google Scholar
  147. Wayson NE, McMahon C, Prince FM (1946) An evaluation of three plague vaccines against infection in guinea pigs induced by natural and artificial methods. Public Health Rep 61:1511–1518Google Scholar
  148. Weening EH, Cathelyn JS, Kaufman G, Lawrenz MB, Price P, Goldman WE, Miller VL (2011) Dependence of Y. pestis capsule for pathogenesis is influenced by mouse background. Infect Immun 79:644–652Google Scholar
  149. Welkos SL, Davis KM, Pitt LM, Worsham PL, Freidlander AM (1995) Studies on the contribution of the F1 capsule-associated plasmid pFra to the virulence of Yersinia pestis. Contrib Microbiol Immunol 13:299–305Google Scholar
  150. Welkos SL, Friedlander AM, Davis KJ (1997) Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain CO92. Microb Pathog 23:211–223Google Scholar
  151. Welkos S, Pitt ML, Martinez M, Friedlander A, Vogel P, Tammariello R (2002) Determination of the virulence of the pigmentation-deficient and pigmentation-/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206–2214Google Scholar
  152. Williams RC Jr, Gewurz H, Quie PG (1972) Effects of fraction I from Yersinia pestis on phagocytosis in vitro. J Infect Dis 126:235–241Google Scholar
  153. Williamson ED (2001) Plague vaccine research and development. J Appl Microbiol 91:606–608Google Scholar
  154. Williamson ED, Flick-Smith HC, Lebutt C, Rowland CA, Jones SM, Waters EL, Gwyther RJ, Miller J, Packer PJ, Irving M (2005) Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infect Immun 73:3598–3608Google Scholar
  155. Williamson ED, Flick-Smith HC, Waters E, Miller J, Hodgson I, Le Butt CS, Hill J (2007) Immunogenicity of the rF1+rV vaccine for plague with identification of potential immune correlates. Microb Pathog 42:11–21Google Scholar
  156. Worsham PL, Stein MP, Welkos SL (1995) Construction of defined F1 negative mutants of virulent Yersinia pestis. Contrib Microbiol Immunol 13:325–328Google Scholar
  157. Wycoff KL, Belle A, Deppe D, Schaefer L, Maclean JM, Haase S, Trilling AK, Liu S, Leppla SH, Geren IN, Pawlik J, Peterson JW (2011) Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob Agents Chemother 55:132–139Google Scholar
  158. Yamanaka H, Hoyt T, Yang X, Golden S, Bosio CM, Crist K, Becker T, Maddaloni M, Pascual DW (2008) A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague. Infect Immun 76:4564–4573Google Scholar
  159. Yamanaka H, Hoyt T, Bowen R, Yang X, Crist K, Golden S, Maddaloni M, Pascual DW (2009) An IL-12 DNA vaccine co-expressing Yersinia pestis antigens protects against pneumonic plague. Vaccine 27:80–87Google Scholar
  160. Yamanaka H, Hoyt T, Yang X, Bowen R, Golden S, Crist K, Becker T, Maddaloni M, Pascual DW (2010) A parenteral DNA vaccine protects against pneumonic plague. Vaccine 28:3219–3230Google Scholar
  161. Zauberman A, Tidhar A, LevyY Bar-Haim E, Halperin G, Flashner Y, Cohen S, Shafferman A, Mamroud E (2009) Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague. PLoS One 4(6):e5938Google Scholar
  162. Zeng G, Chen J, Zhong L, Wang R, Jiang L, Cai J, Yan L, Huang D, Chen CY, Chen ZW (2009) NSOM- and AFM-based nanotechnology elucidates nano-structural and atomic-force features of a Y. pestis V immunogen-containing particle vaccine capable of eliciting robust response. Proteomics 9:538–1547Google Scholar
  163. Zhan L, Han Y, Yang L, Geng J, Li Y, Gao H, Guo Z, Fan W, Li G, Zhang L, Qin C, Zhou D, Yang R (2008) The cyclic AMP receptor protein, CRP, is required for both virulence and expression of the minimal crp regulon in Yersinia pestis biovar microtus. Infect Immun 76:5028–5037Google Scholar
  164. Zhan L, Yang L, Zhou L, Li Y, Gao H, Guo Z, Zhang L, Qin C, Zhou D, Yang R (2009) Direct and negative regulation of the sycO ypkA–ypoJ operon by cyclic AMP receptor protein (CRP) in Yersinia pestis. BMC Microbiol 9:178Google Scholar
  165. Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, Klena JD, Skurnik M, Hinnebusch BJ, Chen T (2008) Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 283:31511–31521Google Scholar
  166. Zilinskas RA (2006) The anti-plague system and the Soviet biological warfare program. Crit Rev Microbiol 32:47–64Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jason A. Rosenzweig
    • 1
  • Olufisayo Jejelowo
    • 1
  • Jian Sha
    • 2
  • Tatiana E. Erova
    • 2
  • Sheri M. Brackman
    • 2
  • Michelle L. Kirtley
    • 2
  • Cristina J. van Lier
    • 2
  • Ashok K. Chopra
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Biology, Center for Bionanotechnology and Environmental Research (CBER)Texas Southern UniversityHoustonUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Sealy Center for Vaccine DevelopmentUniversity of Texas Medical BranchGalvestonUSA
  4. 4.Institute of Human Infections and ImmunityUniversity of Texas Medical BranchGalvestonUSA
  5. 5.Galveston National LaboratoryUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations