Applied Microbiology and Biotechnology

, Volume 91, Issue 2, pp 251–264 | Cite as

Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production

  • Markus Michael MüllerEmail author
  • Rudolf Hausmann


During the last decade, the demand for economical and sustainable bioprocesses replacing petrochemical-derived products has significantly increased. Rhamnolipids are interesting biosurfactants that might possess a broad industrial application range. However, despite of 60 years of research in the area of rhamnolipid production, the economic feasibility of these glycolipids is pending. Although the biosynthesis and regulatory network are in a big part known, the actual incidents on the cellular and process level during bioreactor cultivation are not mastered. Traditional engineering by random and targeted genetic alteration, process design, and recombinant strategies did not succeed by now. For enhanced process development, there is an urgent need of in-depth information about the rhamnolipid production regulation during bioreactor cultivation to design knowledge-based genetic and process engineering strategies. Rhamnolipids are structurally comparable, simple secondary metabolites and thus have the potential to become instrumental in future secondary metabolite engineering by systems biotechnology. This review summarizes current knowledge about the regulatory and metabolic network of rhamnolipid synthesis and discusses traditional and advanced engineering strategies performed for rhamnolipid production improvement focusing on Pseudomonas aeruginosa. Finally, the opportunities of applying the systems biotechnology toolbox on the whole-cell biocatalyst and bioprocess level for further rhamnolipid production optimization are discussed.


Rhamnolipid Systems biotechnology Secondary metabolite Process optimization Biosurfactant Glycolipid 


  1. Abalos A, Pinazo A, Infante M, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371CrossRefGoogle Scholar
  2. Abalos A, Maximo F, Manresa MA, Bastida J (2002) Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J Chem Technol Biotechnol 77:777–784CrossRefGoogle Scholar
  3. Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E (2010a) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation and bioengineering of production. In: Sobéron-Chavez G (ed) Biosurfactants, 1st edn., VII. Springer, Berlin, 216 pp (hardcover edn.)Google Scholar
  4. Abdel-Mawgoud AM, Lepine F, Deziel E (2010b) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefGoogle Scholar
  5. Albus AM, Pesci EC, RunyenJanecky LJ, West SEH, Iglewski BH (1997) Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928–3935Google Scholar
  6. (2011) List of APG suppliers in Asia. Hong Kong Limited and licensors. Available at Accessed 26 March 2010
  7. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  8. Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168CrossRefGoogle Scholar
  9. Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol Lett 18:263–268Google Scholar
  10. Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444CrossRefGoogle Scholar
  11. Blank LM, Kuepfer L (2010) Metabolic flux distributions: genetic information, computational predictions, and experimental validation. Appl Microbiol Biotechnol 86:1243–1255CrossRefGoogle Scholar
  12. Bredenbruch F, Nimtz M, Wray V, Morr M, Muller R, Haussler S (2005) Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinofines. J Bacteriol 187:3630–3635CrossRefGoogle Scholar
  13. Bujara M, Panke S (2010) Engineering in complex systems. Curr Opin Biotechnol 21:586–591CrossRefGoogle Scholar
  14. Burger M, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Federation Proceedings 21:82Google Scholar
  15. Byrd MS, Sadovskaya I, Vinogradov E, Lu HP, Sprinkle AB, Richardson SH, Ma LY, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638CrossRefGoogle Scholar
  16. Cabrera-Valladares N, Richardson AP, Olvera C, Trevino LG, Deziel E, Lepine F, Soberon-Chavez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194CrossRefGoogle Scholar
  17. Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361CrossRefGoogle Scholar
  18. Campos-García J, Caro AD, Nájera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent ß-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451Google Scholar
  19. Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199CrossRefGoogle Scholar
  20. Chayabutra C, Wu J, Ju L (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33CrossRefGoogle Scholar
  21. Chen S-Y, Wei Y-H, Chang J-S (2007a) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74CrossRefGoogle Scholar
  22. Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007b) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23:661–666CrossRefGoogle Scholar
  23. Choi C, Munch R, Leupold S, Klein J, Siegel I, Thielen B, Benkert B, Kucklick M, Schobert M, Barthelmes J, Ebeling C, Haddad I, Scheer M, Grote A, Hiller K, Bunk B, Schreiber K, Retter I, Schomburg D, Jahn D (2007) SYSTOMONAS—an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Research 35:D533–D537CrossRefGoogle Scholar
  24. Choi MH, Xu J, Gutierrez M, Yoo T, Cho Y-H, Yoon SC (2011) Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 13C NMR analysis of the products in wild-type and mutants. J Biotechnol 151:30–42CrossRefGoogle Scholar
  25. Costa S, Lepine F, Milot S, Deziel E, Nitschke M, Contiero J (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072CrossRefGoogle Scholar
  26. De Lima CJB, Franca FP, Servulo EFC, Resende AA, Cardoso VL (2007) Enhancement of rhamnolipid production in residual soybean oil by an isolated strain of Pseudomonas aeruginosa. Appl Biochem Biotechnol 137:463–470CrossRefGoogle Scholar
  27. Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the activity of a prpoS::GFP reporter gene in E. coli. Microbial Cell Factories 8:15Google Scholar
  28. Deziel E, Lepine F, Milot S, He JX, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America 101:1339–1344CrossRefGoogle Scholar
  29. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013CrossRefGoogle Scholar
  30. Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263CrossRefGoogle Scholar
  31. Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends in Microbiology 15:469–475CrossRefGoogle Scholar
  32. Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409:391–395CrossRefGoogle Scholar
  33. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143Google Scholar
  34. Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26:159–167CrossRefGoogle Scholar
  35. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology 48:155–171CrossRefGoogle Scholar
  36. Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D (2010) How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol 12:1734–1747CrossRefGoogle Scholar
  37. Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of l-rhamnose. German Patent US005658793AGoogle Scholar
  38. Gjersing EL, Herberg JL, Horn J, Schaldach CM, Maxwell RS (2007) NMR metabolornics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Anal Chem 79:8037–8045CrossRefGoogle Scholar
  39. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980CrossRefGoogle Scholar
  40. Goo E, Kang Y, Kim H, Hwang I (2010) Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. Journal of Proteome Research 9:3184–3199CrossRefGoogle Scholar
  41. Guerra-Santos L, Käppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305Google Scholar
  42. Guerra-Santos LH, Käppeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448Google Scholar
  43. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physiochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotech Bioeng 81:316–322Google Scholar
  44. Halai I, Taylor J (2010) ICIS pricing chemical price reports. Reed Business Information Limited. Available at Accessed 26 March 2010
  45. Han MJ, Lee SY (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439CrossRefGoogle Scholar
  46. Hauser G, Karnovsky ML (1957) Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J Biol Chem 224:91–105Google Scholar
  47. Hauser G, Karnovsky ML (1958) Studies on the biosynthesis of l-rhamnose. J Biol Chem 233:287–291Google Scholar
  48. Herrgard MJ, Covert MW, Palsson BO (2004) Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol 15:70–77CrossRefGoogle Scholar
  49. Hoang TT, Schweizer HP (1997) Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol 179:5326–5332Google Scholar
  50. Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497Google Scholar
  51. Hoffmann N, Rehm BHA (2005) Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol Lett 27:279–282CrossRefGoogle Scholar
  52. Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581Google Scholar
  53. Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM9509T. Eur J Lipid Sci Technol 112:674–680CrossRefGoogle Scholar
  54. Jarvis FG, Johnson MJ (1949) A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126CrossRefGoogle Scholar
  55. Jensen V, Lons D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Munch R, Haussler S (2006) RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188:8601–8606CrossRefGoogle Scholar
  56. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28:27–30CrossRefGoogle Scholar
  57. Katagiri F (2003) Attacking complex problems with the power of systems biology. Plant Physiology 132:417–419CrossRefGoogle Scholar
  58. Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23:456–475CrossRefGoogle Scholar
  59. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefGoogle Scholar
  60. Kuhn D, Blank LM, Schmid A, Buhler B (2010) Systems biotechnology—rational whole-cell biocatalyst and bioprocess design. Engineering in Life Sciences 10:384–397CrossRefGoogle Scholar
  61. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078CrossRefGoogle Scholar
  62. Lee J, Lee SY, Park S, Middelberg AP (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48CrossRefGoogle Scholar
  63. Lee KM, Hwang S, Ha SD, Jang J, Lim D, Kong J (2004) Rhamnolipid production in batch and fed-batch fermentation using Pseudomoas aeruginosa BYK-2 KCTC 18012P. Biotechnology and Bioprocess Engineering 9:267–273CrossRefGoogle Scholar
  64. Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358CrossRefGoogle Scholar
  65. Lepine F, Deziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. Journal of Mass Spectrometry 37:41–46CrossRefGoogle Scholar
  66. Lindhout T, Lau PCY, Brewer D, Lam JS (2009) Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology-Sgm 155:3449–3460CrossRefGoogle Scholar
  67. Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  68. Maier RM, Soberón-Chávez (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  69. Manresa M, Bastida J, Mercade M, Robert M, Deandres C, Espuny M, Guinea J (1991) Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J Ind Microbiol 8:133–136CrossRefGoogle Scholar
  70. Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961CrossRefGoogle Scholar
  71. Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19:1213–1215CrossRefGoogle Scholar
  72. Medina G, Juarez K, Diaz R, Soberon-Chavez G (2003) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology-Sgm 149:3073–3081CrossRefGoogle Scholar
  73. Miller DJ, Zhang YM, Rock CO, White SW (2006) Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 281:18025–18032CrossRefGoogle Scholar
  74. Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor cultivations. Appl Microbiol Biotechnol 87:167–174CrossRefGoogle Scholar
  75. Müller MM, Hörmann B, Kugel M, Syldatk C, Hausmann R (2011a) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol 89:585–592CrossRefGoogle Scholar
  76. Müller MM, Hörmann B, Syldatk C, Hausmann R (2011b) Microbial rhamnolipids. In: Grunwald P (ed) Carbohydrate-modifying biocatalysts. PanStanford Publishing Pte. Ltd., SingaporeGoogle Scholar
  77. Mulligan CN, Gibbs BF (1989) Correlation of nitrogen-metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55:3016–3019Google Scholar
  78. Mulligan CN, Mahmourides G, Gibbs BF (1989) The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 12:37–43CrossRefGoogle Scholar
  79. Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Research 42:1735–1743CrossRefGoogle Scholar
  80. Nouwens AS, Beatson SA, Whitchurch CB, Walsh BJ, Schweizer HP, Mattick JS, Cordwell SJ (2003) Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology-Sgm 149:1311–1322CrossRefGoogle Scholar
  81. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428CrossRefGoogle Scholar
  82. Ochsner UA, Fiechter A, Reiser J (1994a) Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795Google Scholar
  83. Ochsner UA, Koch A, Fiechter A, Reiser J (1994b) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054Google Scholar
  84. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506Google Scholar
  85. Ochsner UA, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer, BerlinGoogle Scholar
  86. Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip((R)) expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287CrossRefGoogle Scholar
  87. Olvera C, Goldberg JB, Sanchez R, Soberon-Chavez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90CrossRefGoogle Scholar
  88. Onvista (2011) List of resources: soft commodities. Real-time indication by Royal Bank of Scotland. Available at Accessed 26 March 2010
  89. Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460CrossRefGoogle Scholar
  90. Palma M, Worgall S, Quadri L (2003) Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180:374–379CrossRefGoogle Scholar
  91. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767Google Scholar
  92. Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology-Sgm 150:3405–3413CrossRefGoogle Scholar
  93. Potvin E, Sanschagrin F, Levesque R (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32:38–55CrossRefGoogle Scholar
  94. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146(Pt 11):2803–2814Google Scholar
  95. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718CrossRefGoogle Scholar
  96. Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32CrossRefGoogle Scholar
  97. Ramana KV, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45:249–257CrossRefGoogle Scholar
  98. Ramana KV, Charyulu N, Karanth NG (1991) A mathematical model for the production of biosurfactants of Pseudomonas aeruginosa CFTR-6: production of biomass. J Chem Technol Biotechnol 51:525–538CrossRefGoogle Scholar
  99. Rehm BHA, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis—the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem 273:24044–24051CrossRefGoogle Scholar
  100. Rehm BHA, Mitsky TA, Steinbuchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109CrossRefGoogle Scholar
  101. Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989Google Scholar
  102. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319CrossRefGoogle Scholar
  103. Reis RS, da Rocha SLG, Chapeaurouge DA, Domont GB, Santa Anna LMM, Freire DMG, Perales J (2010) Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochem 45:1504–1510CrossRefGoogle Scholar
  104. Robert M, Mercadé ME, Bosch MP, Parra JL, Espuny MJ, Manresa A, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11:871–874CrossRefGoogle Scholar
  105. Robertson BD, Frosch M, Vanputten JPM (1994) The identfication of cryptic rhamnose biosynthesis genes in Neisseria gonorrhoeae and their relationship to lipopolysaccharide biosynthesis. J Bacteriol 176:6915–6920Google Scholar
  106. Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren QH, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5Google Scholar
  107. Salwa MS, Asshifa MNN, Amirul AA, Yahya ARM (2009) Different feeding strategy for the production of biosurfactant from Pseudomonas aeruginosa USM AR2 in modified bioreactor. Biotechnology and Bioprocess Engineering 14:763–768CrossRefGoogle Scholar
  108. Sauer U (2006) Metabolic networks in motion: C-13-based flux analysis. Molecular Systems Biology 2:62Google Scholar
  109. Schaefer AL, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fescheri LuxI protein. Proceedings of the National Academy of Sciences of the United States of America 93:9505–9509CrossRefGoogle Scholar
  110. Schuster M, Greenberg EP (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. Bmc Genomics 8:287CrossRefGoogle Scholar
  111. Siehnel R, Traxler B, An DD, Parsek MR, Schaefer AL, Singh PK (2010) A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 107:7916–7921CrossRefGoogle Scholar
  112. Sim L, Ward OP, Li Z (1997) Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238CrossRefGoogle Scholar
  113. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725CrossRefGoogle Scholar
  114. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267CrossRefGoogle Scholar
  115. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964CrossRefGoogle Scholar
  116. Sullivan ER (1998) Molecular genetics of biosurfactant production. Environ Microbiol 9:263–269Google Scholar
  117. Syldatk C, Wagner F (1987) Production of biosurfactants. In: Biosurfactants and Biotechnology 25:89–120Google Scholar
  118. Syldatk C, Lang S, Matulovic U, Wagner F (1985a) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch [C] 40:61–67Google Scholar
  119. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985b) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch [C] 40:51–60Google Scholar
  120. Toribio J, Escalante AE, Soberon-Chavez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. European Journal of Lipid Science and Technology 112:1082–1087CrossRefGoogle Scholar
  121. Tremblay J, Deziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 11:15CrossRefGoogle Scholar
  122. Tremblay J, Richardson AP, Lepine F, Deziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 9:2622–2630CrossRefGoogle Scholar
  123. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. European Journal of Lipid Science and Technology 105:563–571CrossRefGoogle Scholar
  124. Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502Google Scholar
  125. van Gulik WM (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21:27–34CrossRefGoogle Scholar
  126. Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108CrossRefGoogle Scholar
  127. Vemuri GN, Aristidou AA (2005) Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiology and Molecular Biology Reviews 69:197Google Scholar
  128. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095CrossRefGoogle Scholar
  129. Wagner VE, Gillis RJ, Iglewski BH (2004) Transcriptome analysis of quorum sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 22(Suppl 1):S15–S20CrossRefGoogle Scholar
  130. Wang QH, Fang XD, Bai BJ, Liang XL, Shuler PJ, Goddard WA, Tang YC (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853CrossRefGoogle Scholar
  131. Wang Y, Chu J, Zhuang YP, Wang YH, Xia JY, Zhang SL (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27:989–995CrossRefGoogle Scholar
  132. Wei Y-H, Chou C-L, Chang J-S (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146CrossRefGoogle Scholar
  133. Weuster-Botz D (2005) Parallel reactor systems for bioprocess development. Technology Transfer in Biotechnology: From Lab to Industry to Production 92:125–143Google Scholar
  134. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191CrossRefGoogle Scholar
  135. Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock REW, Brinkman FSL (2009) Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Research 37:D483–D488CrossRefGoogle Scholar
  136. Wlaschin KF, Hu WS (2006) Fedbatch culture and dynamic nutrient feeding. Adv Biochem Eng Biotechnol 101:43–74Google Scholar
  137. Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends in Biotechnology 26:321–327CrossRefGoogle Scholar
  138. Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99:1157–1164CrossRefGoogle Scholar
  139. Zhang G-l Wu, Y-t Qian X-p, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ SCI 6B:725–730CrossRefGoogle Scholar
  140. Zhang YM, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282Google Scholar
  141. Zhang SL, Ye BC, Chu J, Zhuang YP, Guo MJ (2006) From multi-scale methodology to systems biology: to integrate strain improvement and fermentation optimization. J Chem Technol Biotechnol 81:734–745CrossRefGoogle Scholar
  142. Zhang WW, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology-Sgm 156:287–301CrossRefGoogle Scholar
  143. Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154CrossRefGoogle Scholar
  144. Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K (1990) Modeling of bacterial growth curve. Appl Environ Microbiol 56:1875–1881Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations