Challenges of the utilization of wood polymers: how can they be overcome?

Mini-Review

Abstract

Diminishing fossil fuel resources as well as growing environmental and energy security concerns, in parallel with growing demands on raw materials and energy, have intensified global efforts to utilize wood biopolymers as a renewable resource to produce biofuels and biomaterials. Wood is one of the most abundant biopolymer composites on earth that can be converted into biofuels as well as used as a platform to produce bio-based materials. The major biopolymers in wood are cellulose, hemicelluloses, and lignin which account for >90% of dry weight. These polymers are generally associated with each other in wood cell walls resulting in an intricate and dynamic cell wall structure. This mini-review provides an overview of major wood biopolymers, their structure, and recent developments in their utilization to develop biofuels. Advances in genetic modifications to overcome the recalcitrance of woody biomass for biofuels are discussed and point to a promising future.

Keywords

Wood biopolymer Biofuels Genetic modification Biodiesel 

References

  1. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  2. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefGoogle Scholar
  3. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 101:4851–4861CrossRefGoogle Scholar
  4. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  5. Atalla RH, Brady JW, Matthews JF, Ding SY, Himmel ME (2008) Structures of plant cell wall celluloses. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 188–212Google Scholar
  6. Balakshin MY, Capanema EA, Chen CL, Gracz HS (2003) Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique. J Agric Food Chem 51:6116–6127CrossRefGoogle Scholar
  7. Balakshin MY, Capanema EA, Chang HM (2007) MWL fraction with a high concentration of lignin–carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61:1–7CrossRefGoogle Scholar
  8. Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 10:100CrossRefGoogle Scholar
  9. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  10. Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168CrossRefGoogle Scholar
  11. Brunow G, Kilpelainen I, Sipila J, Syrjanen K, Karhunen P, Setala H, Rummakko P (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lignin and lignan biosynthesis, ACS Symposium Series 697. American Chemical Society, pp 131–147Google Scholar
  12. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141CrossRefGoogle Scholar
  13. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761CrossRefGoogle Scholar
  14. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefGoogle Scholar
  15. Coleman HD, Canam T, Kang KY, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268CrossRefGoogle Scholar
  16. Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-Coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci USA 105:4501–4506CrossRefGoogle Scholar
  17. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123CrossRefGoogle Scholar
  18. Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415CrossRefGoogle Scholar
  19. Demirbas A (2009) Biorefineries: current activities and future development. Energ Convers Manage 50:2782–2801CrossRefGoogle Scholar
  20. Den Haan R, Je McBride, La Grange DC, Lynd LR, Zyl WH (2007a) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299CrossRefGoogle Scholar
  21. Den Haan R, Rose SH, Lynd LR, Zyl WH (2007b) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94CrossRefGoogle Scholar
  22. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefGoogle Scholar
  23. Dinus RJ, Payne P, Sewell NM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation popular wood: properties for ethanol fuel and fiber production. Crit Rev Plant Sci 20:51–69CrossRefGoogle Scholar
  24. Eggeling L, Sahm H (1980) Degradation of conyferyl alcohol and other lignin-related aromatic compounds by Nocardia sp. DSM 1069. Arch Microbiol 126:141–148CrossRefGoogle Scholar
  25. Foston M, Hubbell CA, Davis M, Ragauskas AJ (2009) Variations in cellulosic ultrastructure of poplar. BioEnergy Res 2:193–197CrossRefGoogle Scholar
  26. Foust TD, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 7–37Google Scholar
  27. Grange DC, Haan R, Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208CrossRefGoogle Scholar
  28. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Parsson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA 107:12866–12871CrossRefGoogle Scholar
  29. Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52(2):161–175CrossRefGoogle Scholar
  30. Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72:215–234CrossRefGoogle Scholar
  31. Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX, Hozain M, Kang W, Kiedaisch B, Strauss RE, Hequet EF, Wyatt BG, Jividen GM, Holaday AS (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832CrossRefGoogle Scholar
  32. Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Accepted in Biofuels Bioprod BiorefinGoogle Scholar
  33. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectins. Plant Physiol 153:384–395CrossRefGoogle Scholar
  34. Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 61–93Google Scholar
  35. Haygreen JG, Bowyer JL (1996) Composition and structure of wood cells. In: Forest products and wood science, 3rd edn. Iowa State Univ. Press, Ames, pp 41–56Google Scholar
  36. Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H (1997) Application of maxblend fermentor for microbial processes. J Ferment Bioeng 83:79–86CrossRefGoogle Scholar
  37. Hou L (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093CrossRefGoogle Scholar
  38. Huerta-Beristain G, Utrilla J, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15:55–64CrossRefGoogle Scholar
  39. Johnson DK, Elander RT (2008) Pretreatments for enhanced digestibility of feedstocks. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 436–453Google Scholar
  40. Joshi CP, Mansfield SD (2007) The cellulose paradox—simple molecule, complex biosynthesis. Curr Opin Plant Biol 10:220–226CrossRefGoogle Scholar
  41. Kalluri UC, Keller M (2010) Bioenergy research: a new paradigm in multidisciplinary research. J Royal Soc Interface 7:1391–1401CrossRefGoogle Scholar
  42. Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125CrossRefGoogle Scholar
  43. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefGoogle Scholar
  44. Karhunen P, Rummakko P, Sipila J, Brunow G (1995) Dibenzodioxocins: a novel type of linkage in softwood lignins. Tetrahedron Lett 36:169–170CrossRefGoogle Scholar
  45. Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486CrossRefGoogle Scholar
  46. Kitin P, Voelker SL, Meinzer FC, Beeckman H, Strauss SH, Lachenbruch B (2010) Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant Physiol 154:887–898CrossRefGoogle Scholar
  47. Kukkola EM, Koutaniemi S, Pollanen E, Gustafsson M, Karhunen P, Lundell TK, Saranpaa P, Kilpelainen I, Teeri TH, Fagerstedt KV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500CrossRefGoogle Scholar
  48. Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J 49:184–193CrossRefGoogle Scholar
  49. Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye Z-H (2007) The irregular xylem9 Mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634CrossRefGoogle Scholar
  50. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089CrossRefGoogle Scholar
  51. Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, Rycke RD, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjana W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691CrossRefGoogle Scholar
  52. Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides - a complex process. Curr Opin Plant Biol 9:621–630CrossRefGoogle Scholar
  53. Li X, Chapple C (2010) Understanding lignification: challenges beyond monolignol biosynthesis. Plant Physiol 154:449–452CrossRefGoogle Scholar
  54. Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317CrossRefGoogle Scholar
  55. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756CrossRefGoogle Scholar
  56. Liepman AH, Nairn CJ, Willats WGT, Sørensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143:1881–1893CrossRefGoogle Scholar
  57. Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339CrossRefGoogle Scholar
  58. Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16:577–583CrossRefGoogle Scholar
  59. Mansfield SD (2009) Solutions for dissolution—engineering cell walls for deconstruction. Curr Opin Biotechnol 20:286–294CrossRefGoogle Scholar
  60. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53CrossRefGoogle Scholar
  61. Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300CrossRefGoogle Scholar
  62. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renewable Energy 34:1–5CrossRefGoogle Scholar
  63. Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. In: Himmel ME (ed) Biomass recalcitrance: deconstruction the plant cell wall for bioenergy. Blackwell Publishing, pp 94–187Google Scholar
  64. Moreton RS (1988) Single cell oil. Longman Scientific & Technical copublished with Wiley, USAGoogle Scholar
  65. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H (1998) A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576CrossRefGoogle Scholar
  66. Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapall G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 20:179–187CrossRefGoogle Scholar
  67. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013CrossRefGoogle Scholar
  68. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica on industrial glycerol in a single-state continuous culture. Bioresour Technol 82:43–49CrossRefGoogle Scholar
  69. Pena MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z-H (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563CrossRefGoogle Scholar
  70. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé JC, Pollet B, Mila I, Webster EA, Marstorp HG (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612CrossRefGoogle Scholar
  71. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73CrossRefGoogle Scholar
  72. Rabinovich ML, Melnick MS, Bolobova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67:1026–1050CrossRefGoogle Scholar
  73. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006a) The path forward for biofuels and biomaterials. Science 311:484–487CrossRefGoogle Scholar
  74. Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006b) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65CrossRefGoogle Scholar
  75. Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853CrossRefGoogle Scholar
  76. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815CrossRefGoogle Scholar
  77. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160CrossRefGoogle Scholar
  78. Ratledge C, Wynn JP (2002) The biochemistry and biotechnology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51CrossRefGoogle Scholar
  79. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2000) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC, Boca Raton, pp 35–74Google Scholar
  80. Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790CrossRefGoogle Scholar
  81. Sannigrahi P, Pu Y, Ragauskas AJ (2010) Cellulosic biorefineries—unleashing lignin opportunities. Curr Opin Environ Sustainability 2:383–393CrossRefGoogle Scholar
  82. Santos DS, Camelo AC, Rodrigues KCP, Carlos LC, Pereira N Jr (2010) Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process. Appl Biochem Biotechnol 161:93–105CrossRefGoogle Scholar
  83. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefGoogle Scholar
  84. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127CrossRefGoogle Scholar
  85. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Tech 46:541–549CrossRefGoogle Scholar
  86. Söderström J, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25:187–202CrossRefGoogle Scholar
  87. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78CrossRefGoogle Scholar
  88. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–563CrossRefGoogle Scholar
  89. Stephen JD, Mabee WE, Saddler JN (2010) Biomass logistics as a determinant of second generation biofuel facility scale, location and technology selection. Biofuels Bioprod Biorefin 4:503–518CrossRefGoogle Scholar
  90. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635CrossRefGoogle Scholar
  91. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman, CE (2011) Lignin content in natural Populus variants affects sugar release, early edn. Proc Nat Acad Sci USA (Mar. 28):1–6Google Scholar
  92. Suzuki S, Li L, Sun Y-H, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245CrossRefGoogle Scholar
  93. Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M (2008) Within tree variability of lignin composition in Populus. Wood Sci Technol 42:649–661CrossRefGoogle Scholar
  94. Takahashi J, Rudsander UJ, Hedenström M, Banasiak A, Harholt J, Amelot N, Immerzeel P, Ryden P, Endo S, Ibatullin FM, Brumer H, Campillo E, Master ER, Scheller HV, Sundberg B, Teeri TT, Mellerowicz EJ (2009) KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol 50:1099–1115CrossRefGoogle Scholar
  95. Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92CrossRefGoogle Scholar
  96. van Parijs FRD, Morreel K, Ralph J, Boerjan W, Merks RMH (2010) Modeling lignin polymerization: I. Simulation model of dehydrogenation polymers. Plant Physiol 153:1332–1344CrossRefGoogle Scholar
  97. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285CrossRefGoogle Scholar
  98. Vanholme R, Van Acker R, Boerjan W (2010) Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol 28:543–547CrossRefGoogle Scholar
  99. Vasudevan PT, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430CrossRefGoogle Scholar
  100. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW (2010) Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330:1222–1227CrossRefGoogle Scholar
  101. Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GE, Gunter L, Decker SR, Selig MG, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886CrossRefGoogle Scholar
  102. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at pilot-plant scale. Appl Microbiol Biotechnol 55:547–555CrossRefGoogle Scholar
  103. Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242CrossRefGoogle Scholar
  104. Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T (2010) Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresource Technol 101:9710–9714CrossRefGoogle Scholar
  105. Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129CrossRefGoogle Scholar
  106. Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) VASCULARRELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664CrossRefGoogle Scholar
  107. York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol 11:258–265CrossRefGoogle Scholar
  108. Zhang L, Gellerstedt G (2001) NMR observation of a new lignin structure, a spiro-dienone. Chem Commun (Cambridge, UK) 24:2744–2745Google Scholar
  109. Zhang Y, Ratledge C (2008) Multiple isoforms of malic enzyme in the oleaginous fungus, Mortierella alpina. Mycol Res 112:725–730CrossRefGoogle Scholar
  110. Zhang L, Gellerstedt G, Ralph J, Lu F (2006) NMR studies on the occurrence of spirodienone structures in lignins. J Wood Chem Technol 26:65–79CrossRefGoogle Scholar
  111. Zhang M, Shukla P, Ayyachamy M, Permaul K, Singh S (2010) Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World J Microbiol Biotechnol 26:1041–1046CrossRefGoogle Scholar
  112. Zhong R, Burk D, Morrison W, Ye Z (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–1317CrossRefGoogle Scholar
  113. Zhong R, Lee C, Ye Z-H (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152:1044–1055CrossRefGoogle Scholar
  114. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266CrossRefGoogle Scholar
  115. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002CrossRefGoogle Scholar
  116. Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885CrossRefGoogle Scholar
  117. Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857CrossRefGoogle Scholar
  118. Zinoviev S, Mueller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.BioEnergy Science CenterOak RidgeUSA
  3. 3.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations