Applied Microbiology and Biotechnology

, Volume 92, Issue 3, pp 551–560 | Cite as

Fusion of a family 9 cellulose-binding module improves catalytic potential of Clostridium thermocellum cellodextrin phosphorylase on insoluble cellulose

  • Xinhao Ye
  • Zhiguang Zhu
  • Chenming Zhang
  • Y.-H. Percival ZhangEmail author
Biotechnologically Relevant Enzymes and Proteins


Clostridium thermocellum cellodextrin phosphorylase (CtCDP), a single-module protein without an apparent carbohydrate-binding module, has reported activities on soluble cellodextrin with a degree of polymerization (DP) from two to five. In this study, CtCDP was first discovered to have weak activities on weakly water-soluble celloheptaose and insoluble regenerated amorphous cellulose (RAC). To enhance its activity on solid cellulosic materials, four cellulose binding modules, e.g., CBM3 (type A) from C. thermocellum CbhA, CBM4-2 (type B) from Rhodothermus marinus Xyn10A, CBM6 (type B) from Cellvibrio mixtus Cel5B, and CBM9-2 (type C) from Thermotoga maritima Xyn10A, were fused to the C terminus of CtCDP. Fusion of any selected CBM with CtCDP did not influence its kinetic parameters on cellobiose but affected the binding and catalytic properties on celloheptaose and RAC differently. Among them, addition of CBM9 to CtCDP resulted in a 2.7-fold increase of catalytic efficiency for degrading celloheptaose. CtCDP-CBM9 exhibited enhanced specific activities over 20% on the short-chain RAC (DP = 14) and more than 50% on the long-chain RAC (DP = 164). The chimeric protein CtCDP-CBM9 would be the first step to construct a cellulose phosphorylase for in vitro hydrogen production from cellulose by synthetic pathway biotransformation (SyPaB).


Cellodextrin phosphorylase Carbohydrate-binding module (CBM) Cellulose Protein engineering 



This work was not possible without support from the Biological Systems Engineering Department of Virginia Tech, the Air Force Office of Scientific Research (FA9550-08-1-0145), the USDA Biodesign and Bioprocess Center, and DOE BESC to YPZ.


  1. Ahn JO, Choi ES, Lee HW, Hwang SH, Kim CS, Jang HW, Haam SJ, Jung JK (2004) Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl Microbiol Biotechnol 64:833–839CrossRefGoogle Scholar
  2. Arai M, Tanaka K, Kawaguchi T (1994) Purification and properties of cellodextrin phosphorylase from Clostridium thermocellum. J Ferment Bioeng 77:239–242CrossRefGoogle Scholar
  3. Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329CrossRefGoogle Scholar
  4. Boraston AB, Creagh AL, Alam MM, Kormos JM, Tomme P, Haynes CA, Warren RAJ, Kilburn DG (2001) Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry 40:6240–6247CrossRefGoogle Scholar
  5. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781CrossRefGoogle Scholar
  6. Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600CrossRefGoogle Scholar
  7. Carrard G, Koivula A, Söderlund H, Béguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Nat Acad Sci USA 97:10342–10347CrossRefGoogle Scholar
  8. Hachem MA, Nordberg Karlsson E, Bartonek-Roxâ E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O (2000) Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345:53–60CrossRefGoogle Scholar
  9. Henshaw JL, Bolam DN, Pires VMR, Czjzek M, Henrissat B, Ferreira LMA, Fontes CMGA, Gilbert HJ (2004) The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities. J Biol Chem 279:21552–21559CrossRefGoogle Scholar
  10. Hidaka M, Honda Y, Kitaoka M, Nirasawa S, Hayashi K, Wakagi T, Shoun H, Fushinobu S (2004) Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (α/α)6 barrel fold. Structure 12:937–947CrossRefGoogle Scholar
  11. Hiraishi M, Igarashi K, Kimura S, Wada M, Kitaoka M, Samejima M (2009) Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase. Carbohydr Res 344:2468–2473CrossRefGoogle Scholar
  12. Hong J, Ye X, Zhang YHP (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23:12535–12540CrossRefGoogle Scholar
  13. Johnson PE, Joshi MD, Tomme P, Kilburn DG, McIntosh LP (1996) Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy. Biochemistry 35:14381–14394CrossRefGoogle Scholar
  14. Karita S, Sakka K, Ohmiya K (1996) Cellulose-binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J Ferment Bioeng 81:553–556CrossRefGoogle Scholar
  15. Kawaguchi T, Ikeuchi Y, Tsutsumi N, Kan A, Sumitani J-I, Arai M (1998) Cloning, nucleotide sequence, and expression of the Clostridium thermocellum cellodextrin phosphorylase gene and its application to synthesis of cellulase inhibitors. J Ferment Bioeng 85:144–149CrossRefGoogle Scholar
  16. Kittur FS, Mangala SL, Rus'd AA, Kitaoka M, Tsujibo H, Hayashi K (2003) Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett 549:147–151CrossRefGoogle Scholar
  17. Krishnareddy M, Kim YK, Kitaoka M, Mori Y, Hayashi K (2002) Cellodextrin phosphorylase from Clostridium thermocellum YM4 strain expressed in Escherichia coli. J Appl Glycosci 49:1–8Google Scholar
  18. Kurland CG (1991) Codon bias and gene expression. FEBS Lett 285:165–169CrossRefGoogle Scholar
  19. Li Y, Irwin DC, Wilson DB (2010) Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A. Appl Environ Microbiol 76:2582–2588CrossRefGoogle Scholar
  20. Liu W, Hong J, Bevan DR, Zhang YHP (2009) Fast identification of thermostable β-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnol Bioeng 103:1087–1094CrossRefGoogle Scholar
  21. Liu W, Zhang X, Zhang Z, Zhang YHP (2010) Engineering of Clostridium phytofermentans endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 76:4914–4917CrossRefGoogle Scholar
  22. Lou J, Dawson K, Strobel H (1996) Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Appl Environ Microbiol 62:1770–1773Google Scholar
  23. Maglione G, Matsushita O, Russell JB, Wilson DB (1992) Properties of a genetically reconstructed Prevotella ruminicola endoglucanase. Appl Environ Microbiol 58:3593–3597Google Scholar
  24. Mangala SL, Kittur FS, Nishimoto M, Sakka K, Ohmiya K, Kitaoka M, Hayashi K (2003) Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J Mol Catal B Enzym 21:221–230CrossRefGoogle Scholar
  25. McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770CrossRefGoogle Scholar
  26. McLean BW, Boraston AB, Brouwer D, Sanaie N, Fyfe CA, Warren RAJ, Kilburn DG, Haynes CA (2002) Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem 277:50245–50254CrossRefGoogle Scholar
  27. Nidetzky B, Weinhäusel A, Haltrich D, Kulbe KD, Schinzel R (1996) Maltodextrin phosphorylase from Escherichia coli: production and application for the synthesis of α-glucose-1-phosphate. Ann NY Acad Sci 782:208–218CrossRefGoogle Scholar
  28. Notenboom V, Boraston AB, Kilburn DG, Rose DR (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry 40:6248–6256CrossRefGoogle Scholar
  29. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131CrossRefGoogle Scholar
  30. Ravalason H, Herpoël-Gimbert I, Record E, Bertaud F, Grisel S, de Weert S, van den Hondel CAMJJ, Asther M, Petit-Conil M, Sigoillot J-C (2009) Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. J Biotechnol 142:220–226CrossRefGoogle Scholar
  31. Reichenbecher M, Lottspeich F, Bronnenmeier K (1997) Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 247:262–267CrossRefGoogle Scholar
  32. Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2010) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30CrossRefGoogle Scholar
  33. Samain E, Lancelon-Pin C, Férigo F, Moreau V, Chanzy H, Heyraud A, Driguez H (1995) Phosphorolytic synthesis of cellodextrins. Carbohydr Res 271:217–226CrossRefGoogle Scholar
  34. Schomburg D, Schomburg I, Chang A (2009) Class 2: transferases IV. In: Schomburg D, Schomburg I (eds) Springer handbook of enzymes, vol 31. Springer, New York, pp 434–438CrossRefGoogle Scholar
  35. Sheth K, Alexander JK (1967) Cellodextrin phosphorylase from Clostridium thermocellum. Biochim Biophys Acta, Gen Subj 148:808–810CrossRefGoogle Scholar
  36. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295CrossRefGoogle Scholar
  37. Simpson PJ, Jamieson SJ, Abou-Hachem M, Karlsson EN, Gilbert HJ, Holst O, Williamson MP (2002) The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry 41:5712–5719CrossRefGoogle Scholar
  38. van Bueren AL, Morland C, Gilbert HJ, Boraston AB (2005) Family 6 carbohydrate binding modules recognize the non-reducing end of β-1,3-linked glucans by presenting a unique ligand binding surface. J Biol Chem 280:530–537Google Scholar
  39. Wang Y, Zhang Y-HP (2010) A highly active phosphoglucomutase from Clostridium thermocellum: cloning, purification, characterization, and enhanced thermostability. J Appl Microbiol 108:39–46CrossRefGoogle Scholar
  40. Wells J, Russell J, Shi Y, Weimer P (1995) Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl Environ Microbiol 61:1757–1762Google Scholar
  41. Wen F, Nair NU, Zhao HM (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419CrossRefGoogle Scholar
  42. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang YHP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149–152CrossRefGoogle Scholar
  43. Ye X, Rollin J, Zhang Y-HP (2010) Thermophilic α-glucan phosphorylase from Clostridium thermocellum: cloning, characterization and enhanced thermostability. J Mol Catal B Enzym 65:110–116CrossRefGoogle Scholar
  44. Zhang YHP (2010) Renewable carbohydrates are a potential high density hydrogen carrier. Int J Hydrogen Energy 35:10334–10342CrossRefGoogle Scholar
  45. Zhang YHP, Lynd LR (2003) Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem 322:225–232CrossRefGoogle Scholar
  46. Zhang YHP, Lynd LR (2004a) Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl Environ Microbiol 70:1563–1569CrossRefGoogle Scholar
  47. Zhang YHP, Lynd LR (2004b) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRefGoogle Scholar
  48. Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515CrossRefGoogle Scholar
  49. Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94:888–898CrossRefGoogle Scholar
  50. Zhang XZ, Zhang YHP (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4:98–105CrossRefGoogle Scholar
  51. Zhang YHP, Cui JB, Lynd LR, Kuang LR (2006a) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidences from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648CrossRefGoogle Scholar
  52. Zhang YHP, Himmel ME, Mielenz JR (2006b) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA)  2011

Authors and Affiliations

  • Xinhao Ye
    • 1
  • Zhiguang Zhu
    • 1
  • Chenming Zhang
    • 1
  • Y.-H. Percival Zhang
    • 1
    • 2
    • 3
    Email author
  1. 1.Biological Systems Engineering DepartmentVirginia TechBlacksburgUSA
  2. 2.Institute for Critical Technology and Applied Science (ICTAS)Virginia TechBlacksburgUSA
  3. 3.DOE Bioenergy Science CenterOak RidgeUSA

Personalised recommendations