Advertisement

Applied Microbiology and Biotechnology

, Volume 91, Issue 3, pp 635–644 | Cite as

Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts

  • Julie Neveu
  • Christophe Regeard
  • Michael S. DuBow
Biotechnologically Relevant Enzymes and Proteins

Abstract

The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts.

Keywords

Functional metagenomics Protease Gobi desert Death Valley desert 

Notes

Acknowledgments

The authors would like to thank Barry Holland and Adrienne Kish for interesting comments and discussions, as well as Monique Auberdiac for technical help with the experiments. This work was supported by the Centre National de la Recherche Scientifique (CNRS), France, and by the AQUAPHAGE program of the Agence Nationale de la Recherche (ANR), France.

References

  1. Alam SI, Dube S, Agarwal MK, Singh L (2006) Purification and characterization of an extracellular protease produced by psychrotolerant Clostridium sp. LP3 from lake sediment of Leh, India. Can J Microbiol 52:1238–1246CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  4. Arulmani M, Aparanjini K, Vasanthi K, Arumugam P, Arivuchelvi M, Kalaichelvan T (2007) Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World J Microbiol Biotechnol 23:475–481CrossRefGoogle Scholar
  5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene Publishing Associates/Wiley Interscience, New York CityGoogle Scholar
  6. Barns SM, Delwiche CF, Palmer JD, Dawson SC, Hershberger KL, Pace NR (1996) Phylogenetic perspective on microbial life in hydrothermal ecosystems, past and present. Ciba Found Symp 202:24–32, Discussion, 32–9Google Scholar
  7. Bell PJ, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology 148:2283–2291Google Scholar
  8. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  10. Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, Chung YR, Lee SW (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol 74:723–730CrossRefGoogle Scholar
  11. De Castro RE, Ruiz DM, Gimenez MI, Silveyra MX, Paggi RA, Maupin-Furlow JA (2008) Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles 12:677–687CrossRefGoogle Scholar
  12. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010CrossRefGoogle Scholar
  13. Fieseler L, Hentschel U, Grozdanov L, Schirmer A, Wen G, Platzer M, Hrvatin S, Butzke D, Zimmermann K, Piel J (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73:2144–2155CrossRefGoogle Scholar
  14. Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol 6:948–958CrossRefGoogle Scholar
  15. Godde C, Sahm K, Brouns SJ, Kluskens LD, van der Oost J, de Vos WM, Antranikian G (2005) Cloning and expression of islandisin, a new thermostable subtilisin from Fervidobacterium islandicum, in Escherichia coli. Appl Environ Microbiol 71:3951–3958CrossRefGoogle Scholar
  16. Gold AM, Fahrney D (1964) Sulfonyl fluorides as inhibitors of esterases. II. Formation and reactions of phenylmethanesulfonyl alpha-chymotrypsin. Biochemistry 3:783–791CrossRefGoogle Scholar
  17. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249CrossRefGoogle Scholar
  18. Henne A, Schmitz RA, Bomeke M, Gottschalk G, Rondon D (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116CrossRefGoogle Scholar
  19. Hu Y, Zhang G, Li A, Chen J, Ma L (2008) Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl Microbiol Biotechnol 80:823–830CrossRefGoogle Scholar
  20. Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, Kim SJ, Lee JH (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81:865–874CrossRefGoogle Scholar
  21. Jones BV, Sun F, Marchesi JR (2007) Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett Appl Microbiol 45:418–4120CrossRefGoogle Scholar
  22. Kannan Y, Koga Y, Inoue Y, Haruki M, Takagi M, Imanaka T, Morikawa M, Kanaya S (2001) Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Appl Environ Microbiol 67:2445–2452CrossRefGoogle Scholar
  23. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351CrossRefGoogle Scholar
  24. Laemmli UK, Beguin F, Gujer-Kellenberger G (1970) A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol 47:69–85CrossRefGoogle Scholar
  25. Lammle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S (2007) Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 127:575–592CrossRefGoogle Scholar
  26. Lantz MS, Ciborowski P (1994) Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol 235:563–594CrossRefGoogle Scholar
  27. Lee DG, Jeon JH, Jang MK, Kim NY, Lee JH, Kim SJ, Kim GD, Lee SH (2007) Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnol Lett 29:465–472CrossRefGoogle Scholar
  28. Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777CrossRefGoogle Scholar
  29. Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M (2003) Differential regulation of a hyperthermophilic alpha-amylase with a novel (Ca, Zn) two-metal center by zinc. J Biol Chem 278:9875–9884CrossRefGoogle Scholar
  30. Long C (1961) Biochemist’s handbook. F and FN Spon Ltd, LondonGoogle Scholar
  31. Morimoto S, Fujii T (2009) A new approach to retrieve full lengths of functional genes from soil by PCR-DGGE and metagenome walking. Appl Microbiol Biotechnol 83:389–396CrossRefGoogle Scholar
  32. Neurath H (1989) Proteolytic processing and physiological regulation. Trends Biochem Sci 14:268–271CrossRefGoogle Scholar
  33. North MJ (1982) Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiol Rev 46:308–340Google Scholar
  34. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefGoogle Scholar
  35. Orhan E, Omay D, Guvenilir Y (2005) Partial purification and characterization of protease enzyme from Bacillus subtilis and Bacillus cereus. Appl Biochem Biotechnol 121–124:183–194CrossRefGoogle Scholar
  36. Prestel E, Salamitou S, DuBow MS (2008) An examination of the bacteriophages and bacteria of the Namib Desert. J Microbiol 46:364–372CrossRefGoogle Scholar
  37. Radha S, Gunasekaran P (2008) Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941. Bioresour Technol 99:5528–5537CrossRefGoogle Scholar
  38. Rajan M (2004) Global market for industrial enzymes to reach $2.4 million by 2009. RC-147U Enzymes for Industrial Applications. Business Communications Company, Inc.Google Scholar
  39. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272CrossRefGoogle Scholar
  40. Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF-FINDER: a vector for high-throughput gene identification. Gene 282:33–41CrossRefGoogle Scholar
  41. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547CrossRefGoogle Scholar
  42. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378Google Scholar
  43. Seizen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523CrossRefGoogle Scholar
  44. Silen JL, Frank D, Fujishige A, Bone R, Agard DA (1989) Analysis of prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J Bacteriol 171:1320–1325Google Scholar
  45. Smith CA, Toogood HS, Baker HM, Daniel RM, Baker EN (1999) Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. J Mol Biol 294:1027–1040CrossRefGoogle Scholar
  46. Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9:2289–2297CrossRefGoogle Scholar
  47. Takami H, Akiba T, Horikoshi K (1990) Characterization of an alkaline protease from Bacillus sp. no. AH-101. Appl Microbiol Biotechnol 33:519–523CrossRefGoogle Scholar
  48. Uchida A, Oka Y, Aoyama M, Suzuki S, Yokoi T, Katano H, Mase M, Tada T, Asai K, Yamada K (2004) Expression of myelencephalon-specific protease in transient middle cerebral artery occlusion model of rat brain. Brain Res Mol Brain Res 126:129–136CrossRefGoogle Scholar
  49. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93CrossRefGoogle Scholar
  50. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36CrossRefGoogle Scholar
  51. Voorhorst WG, Warner A, de Vos WM, Siezen RJ (1997) Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Protein Eng 10:905–914CrossRefGoogle Scholar
  52. Waschkowitz T, Rockstroh S, Daniel R (2009) Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl Environ Microbiol 75:2506–2516CrossRefGoogle Scholar
  53. West NE (1990) Structure and function of mycrophytic soil crusts in wildland ecosystems of arid to semi-arid regions. Adv Ecol Res 20:179–223CrossRefGoogle Scholar
  54. Windle HJ, Kelleher D (1997) Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect Immun 65:3132–3137Google Scholar
  55. Ye Y, Tang H (2008) An ORFome assembly approach to metagenomics sequences analysis. Comput Syst Bioinformatics Conf 7:3–13Google Scholar
  56. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322Google Scholar
  57. Zhu XL, Ohta Y, Jordan F, Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339:483–484CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Julie Neveu
    • 1
  • Christophe Regeard
    • 1
  • Michael S. DuBow
    • 1
  1. 1.Univ Paris-SudInstitut de Génétique et Microbiologie, CNRS UMR 8621OrsayFrance

Personalised recommendations