Applied Microbiology and Biotechnology

, Volume 90, Issue 5, pp 1609–1624 | Cite as

Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants

  • Nelson DuránEmail author
  • Priscyla D. Marcato
  • Marcela Durán
  • Alka Yadav
  • Aniket Gade
  • Mahendra Rai


Metal nanoparticles have been studied and applied in many areas including the biomedical, agricultural, electronic fields, etc. Several products of colloidal silver are already on the market. Research on new, eco-friendly and cheaper methods has been initiated. Biological production of metal nanoparticles has been studied by many researchers due to the convenience of the method that produces small particles stabilized by protein. However, the mechanism involved in this production has not yet been elucidated although hypothetical mechanisms have been proposed in the literature. Thus, this review discusses the various mechanisms provided for the biological synthesis of metal nanoparticles by peptides, bacteria, fungi, and plants. One thing that is clear is that the mechanistic aspects in some of the biological systems need more detailed studies.


Silver Nanobiotechnology Nanoparticles Biogenic Mechanisms 



Support from FAPESP, CNPq, Brazilian Network in Nanocosmetics (MCT/CNPq), and the Binational Exchange Program Indo-Brazil (SCI/CNPQ) are acknowledged.


  1. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  3. Ahmad A, Mukherjee P, Senapati P, Mandal D, Khan MI, Kumar R, Santry M (2003c) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerf 28:313–318CrossRefGoogle Scholar
  4. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432CrossRefGoogle Scholar
  5. Anilkumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasri CR, Ahmad A, Khan MI (2007) Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  6. Badri NK, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  7. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009a) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139CrossRefGoogle Scholar
  8. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216CrossRefGoogle Scholar
  9. Bhattacharjee RR, Das AK, Haldar D, Si S, Banerjee A, Mandal TK (2005) Peptide-assisted synthesis of gold nanoparticles and their self-assembly. J Nanosci Nanotechnol 5:1141–1147CrossRefGoogle Scholar
  10. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306CrossRefGoogle Scholar
  11. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefGoogle Scholar
  12. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefGoogle Scholar
  13. Donati I, Travan A, Pelillo C, Scarpa T, Coslovi A, Bonifácio A, Sergo V, Paoletti S (2009) Polyol synthesis of silver nanoparticles: mechanism of reduction by alditol bearing polysaccharides. Biomacromolecules 10:210–213CrossRefGoogle Scholar
  14. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi: 10.1186/1477-3155-3-8 CrossRefGoogle Scholar
  15. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  16. Durán N, Marcato PD, De Conti R, Alves OL, Brocchi M (2008) Silver nanoparticles: control of pathogens, toxicity and cytotoxicity. Nanotoxicology 2:S32Google Scholar
  17. Durán N, Marcato PD, Ingle A, Gade A, Rai M (2009) Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Mahendra R, George K (eds) Progress in mycology: biosynthesis of nanoparticles by microbes and plants. Scientific, Rajasthan, pp 425–449Google Scholar
  18. Durán N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues FA, Esposito E (2010a) Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12:285–292CrossRefGoogle Scholar
  19. Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010b) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959CrossRefGoogle Scholar
  20. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33CrossRefGoogle Scholar
  21. Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A Physicochem Eng Asp 168:87–96CrossRefGoogle Scholar
  22. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi: 10.1186/1477-3155-3-6 CrossRefGoogle Scholar
  23. Gade A, Ingle A, Whiteley CG, Rai M (2010a) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600CrossRefGoogle Scholar
  24. Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010b) Biofabrication of silver nanoparticles by Opuntia ficus–indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6:370–375CrossRefGoogle Scholar
  25. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine NBM 5:382–386Google Scholar
  26. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 3:397–401CrossRefGoogle Scholar
  27. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  28. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic. Langmuir 17:1674–1679CrossRefGoogle Scholar
  29. Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100CrossRefGoogle Scholar
  30. Govender Y, Riddin TL, Gericke M, Whiteley CG (2010) On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12:261–271CrossRefGoogle Scholar
  31. Graf P, Mantion A, Foelske A, Shkilnyy A, Masic A, Thünemann AF, Taubert A (2009) Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chem Eur J 15:5831–5844CrossRefGoogle Scholar
  32. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463CrossRefGoogle Scholar
  33. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  34. Hennebel T, De Gusseme B, Boon N, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–98CrossRefGoogle Scholar
  35. Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci A Pure Appl Chem 13:727–750CrossRefGoogle Scholar
  36. Huang J, Chen C, He N, Hong J, Lu Y, Qingbiao L, Shao W, Sun D, Wang XH, Wang Y, Yiang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–106Google Scholar
  37. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006CrossRefGoogle Scholar
  38. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  39. Jha AK, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291CrossRefGoogle Scholar
  40. Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B Biointerf 73:219–223CrossRefGoogle Scholar
  41. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerf 65:150–153CrossRefGoogle Scholar
  42. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted synthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085CrossRefGoogle Scholar
  43. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614CrossRefGoogle Scholar
  44. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306CrossRefGoogle Scholar
  45. Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232CrossRefGoogle Scholar
  46. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  47. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–443CrossRefGoogle Scholar
  48. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  49. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7:3162–3165Google Scholar
  50. Lengke M, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)–thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661CrossRefGoogle Scholar
  51. Lengke M, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)–thiosulfate and gold(III)–chloride complexes. Langmuir 22:2780–2787CrossRefGoogle Scholar
  52. Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)–chloride complex. Environ Sci Technol 40:6304–6309CrossRefGoogle Scholar
  53. Li S, Qui L, Shen Y, Xie A, Yu X, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annum L extract. Green Chem 9:852–858CrossRefGoogle Scholar
  54. Lin ZY, Zhou CH, Wu JM, Zhou JZ, Wang L (2005) A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 61:1195–1200CrossRefGoogle Scholar
  55. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492CrossRefGoogle Scholar
  56. Marcato PD, Durán N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8:2216–2229CrossRefGoogle Scholar
  57. Materska M (2008) Quercetin and its derivatives: chemical structure and bioactivity—a review. Pol J Food Nutr Sci 58:407–413Google Scholar
  58. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  59. Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421CrossRefGoogle Scholar
  60. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7Google Scholar
  61. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172CrossRefGoogle Scholar
  62. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 4:295–298Google Scholar
  63. Nam KT, Lee YL, Krauland EM, Kottmann ST, Belcher AM (2008) Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2:1480–1486CrossRefGoogle Scholar
  64. Nangia Y, Wangoo N, Goyal N, Sharma S, Wu JS, Dravid V, Shekhawat GS, Suri CR (2009) Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett 94:233901CrossRefGoogle Scholar
  65. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–96CrossRefGoogle Scholar
  66. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  67. Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomat Biostruct 4:45–50Google Scholar
  68. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415–1422CrossRefGoogle Scholar
  69. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnology 5:34–41CrossRefGoogle Scholar
  70. Rai MK, Yadav AP, Gade AK (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284CrossRefGoogle Scholar
  71. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Advan 27:76–83CrossRefGoogle Scholar
  72. Ray S, Das AK, Banerjee A (2006) Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks. Chem Commun (26):2816–2818Google Scholar
  73. Richardson A, Chan BC, Crouch RD, Janiec A, Chan BC, Crouch RD (2006) Synthesis of silver nanoparticles: an undergraduate laboratory using green approach. Chem Educ 11:331–333Google Scholar
  74. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. Lycopersici using response surface methodology. Nanotechnology 17:1–8CrossRefGoogle Scholar
  75. Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb Technol 45:267–273CrossRefGoogle Scholar
  76. Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzyme Microb Technol 46:501–505CrossRefGoogle Scholar
  77. Safaepour M, Shahverdi AR, Shahverdi HR, Khorramizadeh MR, Gohari AR (2009) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J Med Biotechnol 1:111–115Google Scholar
  78. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E J Chem 6:61–70Google Scholar
  79. Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefGoogle Scholar
  80. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004a) Synthesis of aqueous Au core–Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air–water interface. Langmuir 20:7825–7836CrossRefGoogle Scholar
  81. Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, Sastry M (2004b) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–102CrossRefGoogle Scholar
  82. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923CrossRefGoogle Scholar
  83. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  84. Shankar SS, Ahmad A, Rai A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles by using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefGoogle Scholar
  85. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRefGoogle Scholar
  86. Si S, Mandal TK (2007) Trytophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem Eur J 13:3160–3168CrossRefGoogle Scholar
  87. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomat Biostruct 3:115–122Google Scholar
  88. Sintubin L, Windt WE, Dick J, Mast J, Ha DV, Verstarete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–761CrossRefGoogle Scholar
  89. Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci 97:1055–1059Google Scholar
  90. Slocik JM, Naik RR, Stone MO, Wright DW (2005) Viral templates for gold nanoparticle synthesis. J Mater Chem 15:749–753CrossRefGoogle Scholar
  91. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84CrossRefGoogle Scholar
  92. Takano Y, Nakamura H (2006) Quantum mechanical study of the proton transfer via a peptide bond in the novel proton translocation pathway of cytochrome c oxidase. Chem Phys Lett 430:149–155CrossRefGoogle Scholar
  93. Tan Y, Wang Y, Jiang L, Zhu D (2002) Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J Colloid Interface Sci 249:336–345CrossRefGoogle Scholar
  94. Tavera-Davila L, Liu HB, Herrera-Becerra R, Canizal G, Balcazar M, Ascencio JA (2009) Analysis of Ag nanoparticles synthesized by bioreduction. J Nanosci Nanotechnol 9:1785–1791CrossRefGoogle Scholar
  95. Thakkar KN, Mhatre SS, Rasesh Y, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine NBM 6:257–262Google Scholar
  96. Tomczak MM, Slocik JM, Stone MO, Naik RR (2007) Bio-based approaches to inorganic material synthesis. Biochem Soc Trans 35:512–515CrossRefGoogle Scholar
  97. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Kumar SR, Gurunathan PS (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B Biointerf 75:335–341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nelson Durán
    • 1
    • 2
    Email author
  • Priscyla D. Marcato
    • 1
  • Marcela Durán
    • 1
  • Alka Yadav
    • 3
  • Aniket Gade
    • 3
  • Mahendra Rai
    • 3
  1. 1.Chemistry Institute, Biological Chemistry LaboratoryUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Center of Natural and Human Sciences, Department of Biochemistry and BiophysicsUniversidade Federal do ABCSanto AndréBrazil
  3. 3.Department of BiotechnologySGB Amravati UniversityAmravatiIndia

Personalised recommendations