Advertisement

Applied Microbiology and Biotechnology

, Volume 90, Issue 3, pp 1179–1191 | Cite as

Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell

  • Jung Rae Kim
  • Nelli J. Beecroft
  • John R. Varcoe
  • Richard M. Dinsdale
  • Alan J. Guwy
  • Robert C. T. Slade
  • Alfred Thumser
  • Claudio Avignone-Rossa
  • Giuliano C. Premier
Bioenergy and Biofuels

Abstract

The spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard’s coefficient, shows 80–90% similarity in species composition. Biofilm development through fed-batch start-up and subsequent stable continuous operation results in a population shift from γ-Proteobacteria- and Bacteroidetes- to Firmicutes-dominated communities, with other diverse species present at much lower relative proportions. DGGE patterns were analysed by range-weighted richness (Rr) and Pareto–Lorenz evenness distribution curves to investigate the evolution of the bacterial community. The first modules shifted from dominance by species closely related to Bacteroides graminisolvens, Raoultella ornithinolytica and Klebsiella sp. BM21 at the start of continuous-mode operation to a community dominated by Paludibacter propionicigenes-, Lactococcus sp.-, Pantoea agglomerans- and Klebsiella oxytoca-related species with stable power generation (6.0 W/m3) at day 97. Operational strategies that consider the dynamics of the population will provide useful parameters for evaluating system performance in the practical application of microbial fuel cells.

Keywords

Microbial fuel cell (MFC) Electricity generation DGGE Identification Semi-quantitative microbial community analysis 

Notes

Acknowledgements

This research was funded by the Research Councils UK (RCUK) Energy Programme, SUPERGEN Biological Fuel Cell project (EP/D047943/1) supported by grant 68-3A75-3-150. The Energy Programme is an RCUK cross-council initiative led by EPSRC and contributed to by ESRC, NERC, BBSRC and STFC.

Supplementary material

253_2011_3181_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2.33 MB)

References

  1. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394CrossRefGoogle Scholar
  2. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71(12):7724–7736CrossRefGoogle Scholar
  3. Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14(3):270–276CrossRefGoogle Scholar
  4. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525CrossRefGoogle Scholar
  5. Chung K, Okabe S (2009) Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl Microbiol Biotechnol 83(5):965–977CrossRefGoogle Scholar
  6. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31(1):442–443CrossRefGoogle Scholar
  7. Dopson M, Halinen AK, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA (2007) Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioeng 97(5):1205–1215CrossRefGoogle Scholar
  8. el Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65(3):982–988Google Scholar
  9. Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  10. Fernández AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66(9):4058–4067CrossRefGoogle Scholar
  11. Freguia S, Rabaey K, Yuan Z, Jr K (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937–7943CrossRefGoogle Scholar
  12. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Si I, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103(30):11358–11363CrossRefGoogle Scholar
  13. Grady CPL, Daigger GT, Lim HC (1999) Biological wastewater treatment, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  14. Green SJ, Leigh MB, Neufeld JD (2009) Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids and derived compounds. Springer, Heidelberg, pp 4137–4158Google Scholar
  15. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40(17):5212–5217CrossRefGoogle Scholar
  16. Huang LP, Zeng RJ, Angelidaki I (2008) Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour Technol 99(10):4178–4184CrossRefGoogle Scholar
  17. Ishii S, Hotta Y, Watanabe K (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72(2):286–294CrossRefGoogle Scholar
  18. Jung S, Regan J (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77(2):393–402CrossRefGoogle Scholar
  19. Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J Power Sources 187(2):393–399CrossRefGoogle Scholar
  20. Kim JR, Premier GC, Hawkes FR, Rodríguez J, Dinsdale RM, Guwy AJ (2010) Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour Technol 101(4):1190–1198CrossRefGoogle Scholar
  21. Koskinen PEP, Kaksonen AH, Puhakka JA (2007) The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidised-bed bioreactor. Biotechnol Bioeng 97(4):742–758CrossRefGoogle Scholar
  22. Lee J, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223(2):185–191CrossRefGoogle Scholar
  23. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro 7(5):375–381CrossRefGoogle Scholar
  24. Logan BE, Regan JM (2006a) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518CrossRefGoogle Scholar
  25. Logan BE, Regan JM (2006b) Feature article: microbial fuel cells—challenges and applications. Environ Sci Technol 40(17):5172–5180CrossRefGoogle Scholar
  26. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332CrossRefGoogle Scholar
  27. Lower SK, Hochella MF Jr, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha –FeOOH. Science 292(5520):1360–1363CrossRefGoogle Scholar
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371CrossRefGoogle Scholar
  29. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10(6):1571–1581CrossRefGoogle Scholar
  30. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73(1):127–141CrossRefGoogle Scholar
  31. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59(3):695–700Google Scholar
  32. Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:1901–1907CrossRefGoogle Scholar
  33. Norland S. (2004). Gel2k v. 1.2.0.6. http://folk.uib.no/nimsn/gel2k/
  34. Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233(1):77–82CrossRefGoogle Scholar
  35. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298CrossRefGoogle Scholar
  36. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082CrossRefGoogle Scholar
  37. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41(13):4781–4786CrossRefGoogle Scholar
  38. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678CrossRefGoogle Scholar
  39. Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24(6):261–266CrossRefGoogle Scholar
  40. Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604–612CrossRefGoogle Scholar
  41. Röling WFM, van Breukelen BM, Braster M, Goeltom MT, Groen J, van Verseveld HW (2000) Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb Ecol 40(3):177–188Google Scholar
  42. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  43. Scott K, Murano C, Rimbu G (2007) A tubular microbial fuel cell. J Appl Electrochem 37(9):1063–1068CrossRefGoogle Scholar
  44. Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44CrossRefGoogle Scholar
  45. White HK, Reimers CE, Cordes EE, Dilly GF, Girguis PR (2009) Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J 3(6):635–646CrossRefGoogle Scholar
  46. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2(11):1146–1156CrossRefGoogle Scholar
  47. Zhang T, Fang HHP (2000) Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol Lett 22(5):399–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jung Rae Kim
    • 1
  • Nelli J. Beecroft
    • 3
  • John R. Varcoe
    • 5
  • Richard M. Dinsdale
    • 2
  • Alan J. Guwy
    • 2
  • Robert C. T. Slade
    • 5
  • Alfred Thumser
    • 4
  • Claudio Avignone-Rossa
    • 3
  • Giuliano C. Premier
    • 1
  1. 1.Sustainable Environment Research Centre (SERC), Faculty of Advanced TechnologyUniversity of GlamorganPontypriddUK
  2. 2.Sustainable Environment Research Centre (SERC), Faculty of Health, Sport and ScienceUniversity of GlamorganPontypriddUK
  3. 3.Microbial SciencesUniversity of SurreyGuildfordUK
  4. 4.Biochemical SciencesUniversity of SurreyGuildfordUK
  5. 5.Chemical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations