Advertisement

Applied Microbiology and Biotechnology

, Volume 90, Issue 4, pp 1429–1441 | Cite as

The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.

  • Dipasmita Pal
  • Inna Khozin-GoldbergEmail author
  • Zvi Cohen
  • Sammy Boussiba
Applied Microbial and Cell Physiology

Abstract

We examined responses of batch cultures of the marine microalga Nannochloropsis sp. to combined alterations in salinity (13, 27, and 40 g/l NaCl) and light intensity (170 and 700 μmol photons/m2·s). Major growth parameters and lipid productivity (based on total fatty acid determination) were determined in nitrogen-replete and nitrogen-depleted cultures of an initial biomass of 0.8 and 1.4 g/l, respectively. On the nitrogen-replete medium, increases in light intensity and salinity increased the cellular content of dry weight and lipids due to enhanced formation of triacylglycerols (TAG). Maximum average productivity of ca. 410 mg TFA/l/d were obtained at 700 μmol photons/m2·s and 40 g/l NaCl within 7 days. Under stressful conditions, content of the major LC-PUFA, eicosapentaenoic acid (EPA), was significantly reduced while TAG reached 25% of biomass. In contrast, lower salinity tended to improve major growth parameters, consistent with less variation in EPA contents. Combined higher salinity and light intensity was detrimental to lipid productivity under nitrogen starvation; biomass TFA content, and lipid productivity amounted for only 33% of DW and ca. 200 mg TFA/l/day, respectively. The highest biomass TFA content (ca. 47% DW) and average lipid productivity of ca. 360 mg TFA/l/day were achieved at 13 g/l NaCl and 700 μmol photons/m2·s. Our data further support selecting Nannochloropsis as promising microalgae for biodiesel production. Moreover, appropriate cultivation regimes may render Nannochloropsis microalgae to produce simultaneously major valuable components, EPA, and TAG, while sustaining relatively high biomass growth rates.

Keywords

Biodiesel EPA Microalga Nannochloropsis sp. Salinity Triacylglycerol 

Notes

Acknowledgements

We would like to thank two anonymous reviewers for their critical and helpful evaluation of the manuscript and Ms. S. Didi-Cohen for her dedicated technical assistance.

References

  1. Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499CrossRefGoogle Scholar
  2. Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47CrossRefGoogle Scholar
  3. Chini Zittelli G, Lavista F, Batianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid (EPA) by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312CrossRefGoogle Scholar
  4. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838CrossRefGoogle Scholar
  5. Cohen Z, Khozin-Goldberg I (2005) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. American Oil Chem Society, Champaign, pp 53–72Google Scholar
  6. Fietz S, Bleiß W, Hepperle D, Koppitz H, Krienitz L, Nicklisch A (2005) First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from Lake Baikal. J Phycol 41:780–790CrossRefGoogle Scholar
  7. Fisher T, Berner T, Iluz D, Dubinsky Z (1998) The kinetics of the photoacclimation response of Nannochloropsis sp. (Eustigmatophyceae): a study of changes in ultrastructure and PSU density. J Phycol 34:818–824CrossRefGoogle Scholar
  8. Guillard R, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Husted and Detonula confervacea (Cleve) Gran (“F” medium). Can J Microbiol 8:229–239CrossRefGoogle Scholar
  9. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefGoogle Scholar
  10. Hibberd D (1980) Eustigmatophytes. In: Cox E (ed) Phytoflagellates: developments in marine biology. Elsevier, New York, pp 319–334Google Scholar
  11. Hodgson P, Henderson R, Sargent J, Leftley J (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. J Appl Phycol 3:169–181CrossRefGoogle Scholar
  12. Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992CrossRefGoogle Scholar
  13. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  14. Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994CrossRefGoogle Scholar
  15. Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36:204–210Google Scholar
  16. Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129CrossRefGoogle Scholar
  17. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Biofuels from eukaryotic microalgae. Eukaryot Cell. doi: 10.1128/EC.00364-09 Google Scholar
  18. Renaud S, Parry D, Thinh L, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp., and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53CrossRefGoogle Scholar
  19. Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356CrossRefGoogle Scholar
  20. Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236CrossRefGoogle Scholar
  21. Rodolfi L, Chini Zittelli G, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng 20:243–248CrossRefGoogle Scholar
  22. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  23. Roessler PG (1990) Environmental control of glycerolipid metabolismin microalgae: commercial implications and future research directions. J Phycol 26:393–399CrossRefGoogle Scholar
  24. Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Meloti P (2004) Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J World Aquac Soc 35:401–411CrossRefGoogle Scholar
  25. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: inter-specific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384CrossRefGoogle Scholar
  26. Solovchenko A, Khozin-Goldberg I, Cohen Z, Merzlyak M (2009) Carotenoid-to- chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366CrossRefGoogle Scholar
  27. Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251CrossRefGoogle Scholar
  28. Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S (2010) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotech. doi: 10.1007/s10126-010-9323-x
  29. Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58CrossRefGoogle Scholar
  30. Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296CrossRefGoogle Scholar
  31. Sukenik A (1999) Production of EPA by Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 41–56Google Scholar
  32. Sukenik A, Beardall J, Kromkamp JC, Kopeck J, Masojídek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308CrossRefGoogle Scholar
  33. Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J Phycol 26:463–469CrossRefGoogle Scholar
  34. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  35. Sukenik A, Yamaguchi Y, Livne A (1993a) Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J Phycol 29:620–626CrossRefGoogle Scholar
  36. Sukenik A, Zamora O, Carmeli Y (1993b) Biochemical quality of marine unicellular algae with emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326CrossRefGoogle Scholar
  37. Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45Google Scholar
  38. Tredici M (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162CrossRefGoogle Scholar
  39. Vieler A, Wilhelm C, Goss R, Süß R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155CrossRefGoogle Scholar
  40. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar
  41. Zou N, Zhang C, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dipasmita Pal
    • 1
  • Inna Khozin-Goldberg
    • 1
    Email author
  • Zvi Cohen
    • 1
  • Sammy Boussiba
    • 1
  1. 1.French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the Negev, Sede-Boker CampusMidreshet Ben-GurionIsrael

Personalised recommendations