Applied Microbiology and Biotechnology

, Volume 90, Issue 1, pp 1–10

Engineering tubulin: microtubule functionalization approaches for nanoscale device applications



With the emergences of engineered devices at microscale and nanoscale dimensions, there is a growing need for controlled actuation and transport at these length scales. The kinesin–microtubule system provides a highly evolved biological transport system well suited for these tasks. Accordingly, there is an ongoing effort to create hybrid nanodevices that integrate biological components with engineered materials for applications such as biological separations, nanoscale assembly, and sensing. Adopting microtubules for these applications generally requires covalent attachment of biotin, fluorophores, or other biomolecules to tubulin enable surface or cargo attachment, or visualization. This review summarizes different strategies for functionalizing microtubules for application-focused as well as basic biological research. These functionalization strategies must maintain the integrity of microtubule proteins so that they do not depolymerize and can be transported by kinesin motors, while adding utility such as the ability to reversibly bind cargo. The relevant biochemical and electrical properties of microtubules are discussed, as well as strategies for microtubule stabilization and long-term storage. Next, attachment strategies, such as antibodies and DNA hybridization that have proven useful to date, are discussed in the context of ongoing hybrid nanodevice research. The review concludes with a discussion of less explored opportunities, such as harnessing the utility of tubulin posttranslational modifications and the use of recombinant tubulin that may enable future progress in nanodevice development.


Fluorescence Biotinylation Microfabrication Nanotechnology Kinesin Cytoskeleton 

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of BioengineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations