Applied Microbiology and Biotechnology

, Volume 90, Issue 3, pp 1005–1016 | Cite as

Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus

  • Monika Jaggi
  • Santosh Kumar
  • Alok Krishna Sinha
Applied Genetics and Molecular Biotechnology


Peroxidases are a family of isoenzymes found in all higher plants and are known to be involved in a broad range of physiological processes. However, very little information is available concerning their role in Catharanthus roseus. The present study describes the impact of both overexpression and suppression of a peroxidase gene, CrPrx in C. roseus transgenic hairy root lines. Real-time PCR analysis in 35S-CrPrx and CrPrx-RNAi transgenic lines indicated differential transcript profile for peroxidases as well as for genes and regulators involved in MIA (monoterpenoid indole alkaloid) pathway of C. roseus. Comparative analysis revealed that MIA pathway genes showing elevated levels of expression in 35S-CrPrx transgenic lines showed a significant reduction in their transcript level in CrPrx-RNAi transgenic lines. Metabolite analysis detected higher levels of ajmalicine and serpentine accumulation in overexpressed lines. It was observed that all overexpressed transgenic lines produced more amount of H2O2. These results indicate a role of CrPrx gene in the regulation of MIA pathway genes and regulators, thus affecting the production of specific alkaloids.


Agrobacterium rhizogenes Catharanthus roseus Monoterpenoid indole alkaloids Peroxidases Transgenic hairy roots 



MJ and SK thank Council of Scientific and Industrial Research (CSIR), India for the award of senior research fellowships. The authors are grateful to Dr. Peter Waterhouse of CSIRO Plant Industry, Canberra, Australia, for kindly providing vectors pKANNIBAL and pART27. The work is supported by financial assistance from the core grant of National Institute of Plant Genome Research, New Delhi, India.

Supplementary material

253_2011_3131_MOESM1_ESM.doc (28 kb)
Table S1 List of primers for different constructs (DOC 28 kb)
253_2011_3131_MOESM2_ESM.doc (32 kb)
Table S2 List of common primers used in the present study (DOC 31 kb)
253_2011_3131_MOESM3_ESM.doc (34 kb)
Table S3 List of primers used for qRT-PCR (DOC 34 kb)
253_2011_3131_Fig5_ESM.gif (114 kb)
Fig. S1

Southern blot analysis of 35S-CrPrx hairy root lines. Autoradiogram showing hybridization signals in all transgenic hairy root lines using GUS gene as a probe. Each lane represents 15 μg of genomic DNA digested with the EcoRI and HindIII restriction enzymes. C2-C13 is DNAs from transgenic lines. PR and HR represent the untransformed C. roseus genomic DNA and normal hairy root DNA, respectively, as controls. Numbers on the left indicate positions of the DNA ladder (GIF 114 kb)

253_2011_3131_MOESM4_ESM.tif (258 kb)
High resolution image (TIFF 258 kb)
253_2011_3131_Fig6_ESM.gif (117 kb)
Fig. S2

Monoterpenoid Indole Alkaloid (MIA) biosynthesis in C. roseus. Solid arrows indicate single step, whereas broken arrows represent multi-step enzymatic conversions. Genes highlighted in black box and regulators in bold are analyzed in this study for their transcript accumulation (GIF 117 kb)

253_2011_3131_MOESM5_ESM.tif (76 kb)
High resolution image (TIFF 75 kb)
253_2011_3131_Fig7_ESM.gif (265 kb)
Fig. S3

HPLC analyses of MIAs in C. roseus hairy root extracts from control and transgenic lines. a, b The pure standards of serpentine and ajmalicine, respectively. Con - untransformed hairy root line; C3, C6 and C8 - 35S-CrPrx hairy root lines. Alkaloids peak, 1 for serpentine and 2 for ajmalicine (GIF 264 kb)

253_2011_3131_MOESM6_ESM.tif (209 kb)
High resolution image (TIFF 209 kb)


  1. Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154CrossRefGoogle Scholar
  2. Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659CrossRefGoogle Scholar
  3. Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr Sci 89:1113–1121Google Scholar
  4. Blom TJM, Sierra MI, Van Vliet TB, Franke-van Dijk MEI, de Koning P, Van Iren F, Verpoorte R, Libbenga KR (1991) Uptake and accumulation of ajmalicine in to isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don and its conversion in to serpentine. Planta 183:170–177CrossRefGoogle Scholar
  5. Bolwell GP (1999) Role of active oxygen species and NO in plant defense responses. Curr Opin Plant Biol 2:287–294CrossRefGoogle Scholar
  6. Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220CrossRefGoogle Scholar
  7. Costa MM, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barceló AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417CrossRefGoogle Scholar
  8. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173CrossRefGoogle Scholar
  9. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459CrossRefGoogle Scholar
  10. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212CrossRefGoogle Scholar
  11. Duroux L, Welinder KG (2003) The peroxidase gene family in plants: a physiological overview. J Mol Evol 7:397–407CrossRefGoogle Scholar
  12. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 97:4985–4990Google Scholar
  13. El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305CrossRefGoogle Scholar
  14. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  15. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185CrossRefGoogle Scholar
  16. Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207CrossRefGoogle Scholar
  17. Hilliou F, van der Fits L, Memelink J (2001) Molecular regulation of monoterpenoid indole alkaloid biosynthesis. In: Romeo JT, Sanders JA, Matthews BF (eds) Recent advances in phytochemistry: regulation of phytochemicals by molecular techniques, vol 35. Elsevier Science, Oxford, pp 275–295CrossRefGoogle Scholar
  18. Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122:28–38CrossRefGoogle Scholar
  19. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276CrossRefGoogle Scholar
  20. Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aqua Bot 12:345–354CrossRefGoogle Scholar
  21. Kumar S, Dutta A, Sinha AK, Sen J (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 274:1290–1303CrossRefGoogle Scholar
  22. Lane BG, Dunwell JM, Ray JA, Schmitt MR (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242Google Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408CrossRefGoogle Scholar
  24. Magdi ES, Verpoorte R (2002) Effect of phytohormones on growth and alkaloid accumulation by a Catharanthus roseus cell suspension cultures fed with alkaloid precursors tryptamine and loganin. Plant Cell Tissue Org Cult 68:265–270CrossRefGoogle Scholar
  25. Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931CrossRefGoogle Scholar
  26. Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219CrossRefGoogle Scholar
  27. Menke FLH, Kijne JW, Memelink J (1996) Digging for gene expression levels in Catharanthus roseus: nonradioactive detection of plant mRNA levels. In: Leous M, Matter K, Schroder C, Ziebolz B (eds) Biochemica 2. Boehringer-Mannheim, Mannheim, pp 16–18Google Scholar
  28. Menke FL, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119:1289–1296CrossRefGoogle Scholar
  29. Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193CrossRefGoogle Scholar
  30. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498CrossRefGoogle Scholar
  31. Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Org Cult 42:1–25CrossRefGoogle Scholar
  32. Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893CrossRefGoogle Scholar
  33. Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pré M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948CrossRefGoogle Scholar
  34. Peebles CA, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86CrossRefGoogle Scholar
  35. Rothstein S, Dimaio J, Strand M, Rice D (1987) Stable heritable inhibition of the expression of the NOS gene in tobacco expressing antisense RNA. Proc Natl Acad Sci USA 84:8439–8443CrossRefGoogle Scholar
  36. Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268:5655–5666CrossRefGoogle Scholar
  37. Singh DV, Maithy A, Verma RK, Gupta MM, Kumar S (2000) Simultaneous determination of Catharanthus alkaloids using reversed phase high performance liquid chromatography. J Liq Chromatogr 23:601–607CrossRefGoogle Scholar
  38. Sottomayor M, Ros Barceló A (2003) Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of α-3′, 4′-anhydrovinblastine: a specific role for a multifunctional enzyme. Protoplasma 222:97–105CrossRefGoogle Scholar
  39. Sottomayor M, López-Serrano M, DiCosmo F, Ros Barceló A (1998) Purification and characterization of α-3′, 4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett 428:299–303CrossRefGoogle Scholar
  40. Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769:139–148Google Scholar
  41. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. Plant J 11:1187–1194CrossRefGoogle Scholar
  42. Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138CrossRefGoogle Scholar
  43. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297CrossRefGoogle Scholar
  44. van der Heijden R, Jabos DJ, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628CrossRefGoogle Scholar
  45. van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869CrossRefGoogle Scholar
  46. Verpoorte R, van der Heijden R, Schripsema J, Hoge JHC, ten Hoopen HJG (1993) Plant cell biotechnology for the production of alkaloids present status and prospects. J Nat Prod 56:186–207CrossRefGoogle Scholar
  47. Wang GL, Fang HJ (1998) Plant genetic engineering, 2nd edn. Science, BeijingGoogle Scholar
  48. Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894CrossRefGoogle Scholar
  49. Welinder KG, Justesen AF, Kjærsgåd IVH, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081CrossRefGoogle Scholar
  50. Wesley SV, Helliwell C, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590CrossRefGoogle Scholar
  51. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16:4806–4816CrossRefGoogle Scholar
  52. Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neergaard E, Collinge DB, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117:33–41CrossRefGoogle Scholar
  53. Zhou ML, Zhu XM, Shao JR, Wu YM, Tang YX (2010) Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Appl Microbiol Biotechnol 88:737–750CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Monika Jaggi
    • 1
  • Santosh Kumar
    • 1
    • 2
  • Alok Krishna Sinha
    • 1
  1. 1.National Institute of Plant Genome ResearchNew DelhiIndia
  2. 2.University of KentuckyLexingtonUSA

Personalised recommendations