Applied Microbiology and Biotechnology

, Volume 89, Issue 6, pp 1675–1682 | Cite as

Native and artificial forisomes: functions and applications

  • Gundula A. Noll
  • Boje Müller
  • Antonia M. Ernst
  • Boris Rüping
  • Richard M. Twyman
  • Dirk Prüfer


Forisomes are remarkable protein bodies found exclusively in the phloem of the Fabaceae. When the phloem is wounded, forisomes are converted from a condensed to a dispersed state in an ATP-independent reaction triggered by Ca2+, thereby plugging the sieve tubes and preventing the loss of photoassimilates. Potentially, forisomes are ideal biomaterials for technical devices because the conformational changes can be replicated in vitro and are fully reversible over a large number of cycles. However, the development of technical devices based on forisomes has been hampered by the laborious and time-consuming process of purifying native forisomes from plants. More recently, the problem has been overcome by the production of recombinant artificial forisomes. This is a milestone in the development of forisome-based devices, not only because large quantities of homogeneous forisomes can be produced on demand, but also because their properties can be tailored for particular applications. In this review, we discuss the physical and molecular properties of native and artificial forisomes, focusing on their current applications in technical devices and potential developments in the future.


Artificial forisomes Sieve element occlusion Phloem Recombinant production Smart biomaterial Mechanoprotein 



We gratefully acknowledge Lena Harig for critical reading of the manuscript and helpful discussion. The work was supported with grants from the Fraunhofer MAVO program “Smart Plastics” and the VolkswagenStiftung, contract no. I/82 075.


  1. Atkinson HJ, Babbitt PC (2009) An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Comput Biol 5:e1000541CrossRefGoogle Scholar
  2. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–5890CrossRefGoogle Scholar
  3. Behnke HD (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bulletin 12:143–175Google Scholar
  4. Berg HC (1974) Dynamic properties of bacterial flagellar motors. Nature 249:77–79CrossRefGoogle Scholar
  5. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54CrossRefGoogle Scholar
  6. Boyer PD (1993) The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim Biophys Acta 1140:215–250CrossRefGoogle Scholar
  7. Boyer PD (1997) The ATP synthase–a splendid molecular machine. Annu Rev Biochem 66:717–749CrossRefGoogle Scholar
  8. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734CrossRefGoogle Scholar
  9. Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34:801–815CrossRefGoogle Scholar
  10. Cronshaw J, Esau K (1968a) P protein in the phloem of Cucurbita: I. the development of P-Protein bodies. J Cell Biol 38:25–39CrossRefGoogle Scholar
  11. Cronshaw J, Esau K (1968b) P protein in the phloem of Cucurbita: II. The P protein of mature sieve elements. J Cell Biol 38:292–303CrossRefGoogle Scholar
  12. Dinant S, Lemoine R (2010) The phloem pathway: new issues and old debates. C R Biol 333:307–319CrossRefGoogle Scholar
  13. Duschl C, Geggier P, Jaeger M, Stelzle M, Mueller T, Schnelle T, Fuhr GR (2004) Versatile chip-based tools for the controlled manipulation of microparticles in biology using high frequency electromagnetic fields. In: Anderson H, van der Berg A (eds) Lab-on-chips for cellomics. Kluwer, Norwell, MA, pp 83–122CrossRefGoogle Scholar
  14. Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology 33:26–35CrossRefGoogle Scholar
  15. Fisher DB (1975) Structure of functional soybean sieve elements. Plant Physiol 56:555–569CrossRefGoogle Scholar
  16. Focke M, Kosse D, Müller C, Reinecke H, Zengerle R, von Stetten F (2010) Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10:1365–1386CrossRefGoogle Scholar
  17. Fontanellaz ME (2006) Cloning and molecular characterization of vff1 gene encoding forisomes of Vicia faba. Dissertation, RWTH, GermanyGoogle Scholar
  18. Fulga F, Nicolau DV Jr, Nicolau DV (2009) Models of protein linear molecular motors for dynamic nanodevices. Integr Biol (Camb) 1:150–169CrossRefGoogle Scholar
  19. Gibbons R, Rowe AJ (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149:424–426CrossRefGoogle Scholar
  20. Glowacki J, Mizuno S (2007) Collagen scaffolds for tissue engineering. Biopolymers 89:338–344CrossRefGoogle Scholar
  21. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773CrossRefGoogle Scholar
  22. Hackney DD (1996) The kinetic cycles of myosin, kinesin, and dynein. Annu Rev Physiol 58:731–750CrossRefGoogle Scholar
  23. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133–5138CrossRefGoogle Scholar
  24. Hartig T (1854) Ueber die Querscheidewände zwischen den einzelnen Gliedern der Siebröhren in Cucurbita pepo. Botanische Zeitung 12:51–54Google Scholar
  25. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696CrossRefGoogle Scholar
  26. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380CrossRefGoogle Scholar
  27. Höök P, Vallee RB (2006) The dynein family at a glance. J Cell Sci 119:4369–4371CrossRefGoogle Scholar
  28. Huck WTS (2008) Responsive polymers for nanoscale actuation. Mater Today 11:24–32CrossRefGoogle Scholar
  29. Jaeger M, Uhlig K, Clausen-Schaumann H, Duschl C (2008) The structure and functionality of contractile forisome protein aggregates. Biomaterials 29:247–256CrossRefGoogle Scholar
  30. Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501CrossRefGoogle Scholar
  31. Kinosita K Jr, Yasuda R, Nojj H, Adachi K (2000) A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B Biol Sci 355:473–489CrossRefGoogle Scholar
  32. Kinosita K Jr, Adachi K, Itoh H (2004) Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu Rev Biophys Biomol Struct 33:245–268CrossRefGoogle Scholar
  33. Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50CrossRefGoogle Scholar
  34. Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230CrossRefGoogle Scholar
  35. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603, Erratum in Nature Materials (2005) 4:353CrossRefGoogle Scholar
  36. Korten T, Månsson A, Diez S (2010) Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. Curr Opin Cell Biol 21:477–488Google Scholar
  37. Laflèche D (1966) Ultrastructure et cytochimie des inclusions flagelées des cellules criblées de Phaseolus vulgaris. J Microsc 5:493–510Google Scholar
  38. Lawton DM (1978a) Ultrastructural comparison of the tailed and tailless P-Protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11CrossRefGoogle Scholar
  39. Lawton DM (1978b) P-Protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot 42:353–361Google Scholar
  40. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22CrossRefGoogle Scholar
  41. Liu X, Ma PX (2010) The nanofibrous architecture of poly(L-lactic acid)-based functional copolymers. Biomaterials 31:259–269CrossRefGoogle Scholar
  42. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198CrossRefGoogle Scholar
  43. MacLennan DH, Reithmeier RAF (1998) Ion tamers. Nat Struct Mol Biol 5:409–411CrossRefGoogle Scholar
  44. Martin LM (1995) Thioredoxin – a fold for all reasons. Structure 3:245–250CrossRefGoogle Scholar
  45. Mavroidis C, Dubey A (2003) Biomimetics: from pulses to motors. Nat Matters 2:573–574CrossRefGoogle Scholar
  46. Mavroidis C, Dubey A, Yarmush ML (2004) Molecular machines. Annu Rev Biomed Eng 6:363–395CrossRefGoogle Scholar
  47. Mrazek A (1910) Über geformte eiweißhaltige Inhaltstoffe bei den Leguminosen. Österr Bot Z 60:198–201CrossRefGoogle Scholar
  48. Müller B, Noll GA, Ernst AM, Rüping B, Groscurth S, Twyman RM, Kawchuk LM, Prüfer D (2010) Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices. Appl Microbiol Biotechnol 88:689–698CrossRefGoogle Scholar
  49. Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397:991–1007CrossRefGoogle Scholar
  50. Noll GA (2005) Molekularbiologische Charakterisierung der Forisome. Dissertation. Justus-Liebig Universität, GermanyGoogle Scholar
  51. Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJE, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294CrossRefGoogle Scholar
  52. Noll GA, Rüping B, Ernst AM, Bucsenez M, Twyman RM, Fischer R, Prüfer D (2009) The promoters of forisome genes MtSEO2 and MtSEO3 direct gene expression to immature sieve elements in Medicago truncatula and Nicotiana tabacum. Plant Mol Biol Rep 27:526–533CrossRefGoogle Scholar
  53. O'Connell CB, Tyska MJ, Mooseker MS (2007) Myosin at work: motor adaptations for a variety of cellular functions. Biochim Biophys Acta 1773:615–630CrossRefGoogle Scholar
  54. Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426CrossRefGoogle Scholar
  55. Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710CrossRefGoogle Scholar
  56. Peters WS, Knoblauch M, Warmann SA, Schnetter R, Shen AQ, Pickard WF (2007) Tailed forisomes of Canavalia gladiata: a new model to study Ca2+-driven protein contractility. Ann Bot 100:101–109CrossRefGoogle Scholar
  57. Przybyla DE, Chmielewski J (2010) Higher-order assembly of collagen peptides into nano- and microscale materials. Biochemistry 49:4411–4419CrossRefGoogle Scholar
  58. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  59. Richter A, Howitz S, Kuckling D, Arndt K-F (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B Chem 99:451–458CrossRefGoogle Scholar
  60. Rüping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA (2010) Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol 10:219CrossRefGoogle Scholar
  61. Sabnis DD, Sabnis HM (1995) Phloem proteins: structure, biochemistry and function. In: Iqbal M (ed) The cambial derivatives. Gebrüder Borntraeger, Berlin, pp 271–292Google Scholar
  62. Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A (2010) Latest developments in microfluidic cell biology and analysis. Anal Chem 82:4848–4864CrossRefGoogle Scholar
  63. Schwan S, Fritzsche M, Cismak A, Heilmann A, Spohn U (2007a) In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). Biophys Chem 125:444–452CrossRefGoogle Scholar
  64. Schwan S, Fritzsche M, Cismak A, Noll G, Prüfer D, Spohn U, Heilmann A (2007b) Micromechanical measurements on chemo-mechanical protein aggregates. In: Proceedings of the fall meeting, Materials Research Society USA, Boston, 27–30 Nov 2006, 09750-DD-03-10Google Scholar
  65. Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements on P-protein aggregates (forisomes) from Vicia faba plants. Biophys Chem 139:99–105CrossRefGoogle Scholar
  66. Shen AQ, Hamlington BD, Knoblauch M, Peters WS, Pickard WF (2006) Forisome based biomimetic smart materials. Smart Struct Sys 2:225–235Google Scholar
  67. Strasburger E (1891) Über den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen. Histologische Beiträge 3, Gustav Fischer Verlag, JenaGoogle Scholar
  68. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRefGoogle Scholar
  69. Szent-Gyorgyi A (1945) Studies on muscle. Acta Physiol Scandinav 9:1–115CrossRefGoogle Scholar
  70. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221CrossRefGoogle Scholar
  71. Tuteja N, Umate P, van Bel AJE (2010a) Forisomes: calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends Biotechnol 28:102–110CrossRefGoogle Scholar
  72. Tuteja N, Umate P, Tuteja R (2010b) Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein. Plant Signal Behav 5:1–6CrossRefGoogle Scholar
  73. Uhlig K, Jaeger MS, Lisdat F, Duschl C (2008) A biohybrid microfluidic valve based on forisome protein complexes. J Microelectromech Syst 17:1322–1328CrossRefGoogle Scholar
  74. Ummat A, Dubey A, Sharma G, Mavroidis C (2005) Bio-nano-robotics: state of the art and future challenges. In: Yarmush ML (ed) Tissue engineering and artificial organs (the biomedical engineering handbook). CRC Press, London, pp 19-1–19-33Google Scholar
  75. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50CrossRefGoogle Scholar
  76. van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149CrossRefGoogle Scholar
  77. van den Heuvel MG, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336CrossRefGoogle Scholar
  78. Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, Kang C (1998) Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Mol Biol 5:476–483CrossRefGoogle Scholar
  79. Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388CrossRefGoogle Scholar
  80. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319CrossRefGoogle Scholar
  81. Woolfson DN (2009) Building fibrous biomaterials from α-helical and collagen-like coiled-coil peptides. Biopolymers 94:118–127CrossRefGoogle Scholar
  82. Yasuda R, Noji H, Kinosita K Jr, Yoshida M (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93:1117–1124CrossRefGoogle Scholar
  83. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gundula A. Noll
    • 1
  • Boje Müller
    • 2
  • Antonia M. Ernst
    • 2
  • Boris Rüping
    • 1
  • Richard M. Twyman
    • 3
  • Dirk Prüfer
    • 1
    • 2
  1. 1.Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachenGermany
  3. 3.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations