Advertisement

Applied Microbiology and Biotechnology

, Volume 90, Issue 1, pp 377–384 | Cite as

Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase

  • Waraporn Apiwatanapiwat
  • Yoshinori Murata
  • Akihiko Kosugi
  • Ryosuke Yamada
  • Akihiko Kondo
  • Takamitsu Arai
  • Prapassorn Rugthaworn
  • Yutaka MoriEmail author
Bioenergy and Biofuels

Abstract

In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

Keywords

Arming yeast Cell surface display Ethanol Amylases Cassava pulp Cellulases 

Notes

Acknowledgments

Authors are grateful to Ms. Warunee Tanapase and Dr. Pilanee Vaithanomsat of Kasetsart University, Thailand for providing samples of cassava pulp.

References

  1. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35CrossRefGoogle Scholar
  2. Avancini SR, Faccin GL, Vieira MA, Rovaris AA, Podesta R, Tramonte R, de Souza NM, Amante ER (2007) Cassava starch fermentation wastewater: characterization and preliminary toxicological studies. Food Chem Toxicol 45:2273–2278CrossRefGoogle Scholar
  3. Birol G, Onsan ZI, Kirdar B, Oliver SG (1998) Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb Technol 22:672–677CrossRefGoogle Scholar
  4. Cavedon K, Leschine SB, Canale-Parola E (1990a) Cellulase system of a free-living, mesophilic clostridium (strain C7). J Bacteriol 172:4222–4230Google Scholar
  5. Cavedon K, Leschine SB, Canale-Parola E (1990b) Characterization of the extracellular cellulase from a mesophilic clostridium (strain C7). J Bacteriol 172:4231–4237Google Scholar
  6. Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94CrossRefGoogle Scholar
  7. Dubois M, Gilles KA, Hamilton JK, Reberse PA, Smith F (1956) Colorimetric method for determination of sugars and related substrates. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. Fruta H (1997) Production of glucoamylase by passively immobilized cells of a flocculent yeast, Saccharomyces diastaticus. J Ferment Bioeng 84:169–171CrossRefGoogle Scholar
  9. Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141CrossRefGoogle Scholar
  10. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212CrossRefGoogle Scholar
  11. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146CrossRefGoogle Scholar
  12. Inlow D, McRae J, Ben-Bassat A (1988) Fermentation of corn starch to ethanol with genetically engineered yeast. Biotechnol Bioeng 32:227–234CrossRefGoogle Scholar
  13. Kaneko S, Tanaka T, Noda H, Fukuda H, Akada R, Kondo A (2009) Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 83:783–789CrossRefGoogle Scholar
  14. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143CrossRefGoogle Scholar
  15. Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S (2006) Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 70:573–579CrossRefGoogle Scholar
  16. Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58:291–296CrossRefGoogle Scholar
  17. Kosugi A, Kondo A, Ueda M, Murata Y, Vaithanomsat P, Thanapase W, Arai T, Mori Y (2009) Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy 34:1354–1358CrossRefGoogle Scholar
  18. Liu Y, Kondo A, Ohkawa H, Shita N, Fukuda H (1998) Bioconversion using immobilized recombinant flocculent yeast cells carrying a fused enzyme gene in an intelligent bioreactor. Biochem Eng J 2:229–235CrossRefGoogle Scholar
  19. Seong KT, Katakura Y, Ninomiya K, Bito Y, Katahira S, Kondo A, Ueda M, Shioya S (2006) Effect of flocculation on performance of arming yeast in direct ethanol fermentation. Appl Microbiol Biotechnol 73:60–66CrossRefGoogle Scholar
  20. Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa N, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475CrossRefGoogle Scholar
  21. Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70:5037–5040CrossRefGoogle Scholar
  22. Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates CG (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71:63–69CrossRefGoogle Scholar
  23. Tanaka A, Ueda M (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136Google Scholar
  24. Tanaka T, Masunari S, Ishii J, Wakamura K, Segawa M, Fukuda H, Kondo A (2010) Displaying non-natural, functional molecules on yeast surfaces via biotin-streptavidin interaction. J Biotechnol 145:79–83CrossRefGoogle Scholar
  25. Tubb RS (1986) Amylolytic yeasts for commercial applications. Trends Biotechnol 4:98–104CrossRefGoogle Scholar
  26. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Meth Enzymol 160:87–112CrossRefGoogle Scholar
  27. Yamada R, Bito Y, Adachi T, Tanaka T, Ogino C, Fukud H, Kondo A (2009) Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme Microb Technol 44:344–349CrossRefGoogle Scholar
  28. Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498CrossRefGoogle Scholar
  29. Zanin GM, Santana CC, Bon EP, Giordano RC, de Moraes FF, Andrietta SR, de Carvalho Neto CC, Macedo IC, Fo DL, Ramos LP, Fontana JD (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84–86:1147–1161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Waraporn Apiwatanapiwat
    • 1
    • 2
  • Yoshinori Murata
    • 1
  • Akihiko Kosugi
    • 1
  • Ryosuke Yamada
    • 3
  • Akihiko Kondo
    • 3
  • Takamitsu Arai
    • 1
  • Prapassorn Rugthaworn
    • 1
    • 2
  • Yutaka Mori
    • 1
    Email author
  1. 1.Post-Harvest Science and Technology DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaJapan
  2. 2.Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI)Kasetsart UniversityBangkokThailand
  3. 3.Department of Chemical Science and Engineering, Faculty of EngineeringKobe UniversityKobeJapan

Personalised recommendations