Applied Microbiology and Biotechnology

, Volume 89, Issue 5, pp 1537–1549

Effects of nitrogen catabolite repression and di-ammonium phosphate addition during wine fermentation by a commercial strain of S. cerevisiae

  • Nathan K. Deed
  • Hennie J. J. van Vuuren
  • Richard C. Gardner
Genomics, Transcriptomics, Proteomics

Abstract

Two deletion mutants expected to be defective in nitrogen catabolite repression (NCR) were constructed in a commercial wine yeast background M2: a ure2 mutant and a dal80 gzf3 double mutant. Wild-type and both mutant strains were fermented in Sauvignon Blanc grape juice with and without addition of di-ammonium phosphate (DAP). The dal80 gzf3 double mutant exhibited a long fermentative lag phase, which was offset by DAP addition (corresponding to 300 mg/L of N). Neither the NCR mutations nor DAP addition affected the content of volatile thiols in the final wine. Microarray analyses of transcripts in the wild-type and dal80 gzf3 double-mutant strains were performed after 2% and 70% sugars were fermented. Of 80 genes previously identified as NCR-regulated, only 13 were upregulated during fermentation of the dal80 gzf3 double-mutant strain in grape juice. Following DAP addition, 34 of the known NCR genes were downregulated, including 17 that were downregulated even in the NCR mutant strain. The results demonstrate an unexpected complexity of the NCR response that may reflect differences between strains of yeast or differences in gene regulation during alcoholic fermentation compared with standard aerobic growth.

Keywords

Saccharomyces cerevisiae Wine Fermentation Nitrogen catabolite repression Microarrays Varietal thiols 

Supplementary material

253_2011_3084_MOESM1_ESM.xls (3.6 mb)
ESM 1(XLS 3,660 kb)

References

  1. Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402(6762):689–692CrossRefGoogle Scholar
  2. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11(3):242–295CrossRefGoogle Scholar
  3. Beltran G (2005) Effect of low temperature fermentation and nitrogen content on wine yeast metabolism. Ph.D. thesis, Universitat Rovira i Virgili, Tarragona, SpainGoogle Scholar
  4. Beltran G, Novo M, Rozès N, Mas A, Guillamón JM (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res 4(6):625–632CrossRefGoogle Scholar
  5. Beltran G, Esteve-Zarzoso B, Rozès N, Mas A, Guillamón JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53(4):996–1002CrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Stat Methodol 57:289–300Google Scholar
  7. Blinder D, Coschigano PW, Magasanik B (1996) Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J Bacteriol 178(15):4734–4736Google Scholar
  8. Bradbury JE, Richards KD, Niederer HA, Lee SA, Rod Dunbar P, Gardner RC (2006) A homozygous diploid subset of commercial wine yeast strains. Anton Leeuw Int J G 89(1):27–37Google Scholar
  9. Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179(11):3416–3429Google Scholar
  10. Collart MA, Oliviero S (1995) Preparation of yeast RNA. In: Ausubel FM, Brent R, Kingston RE et al (eds) Current protocols in molecular biology. Wiley, New York, pp 3.12.11–13.12.14Google Scholar
  11. Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26(3):223–238CrossRefGoogle Scholar
  12. Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170(2):708–713Google Scholar
  13. Darriet P, Tominaga T, Lavigne V, Boidron JN, Dubourdieu D (1995) Identification of a powerful aromatic component of Vitis vinifera L. var Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour Fragr J 10(6):385–392CrossRefGoogle Scholar
  14. Dubourdieu D, Tominaga T, Masneuf I, Des Gachons CP, Murat ML (2006) The role of yeasts in grape flavor development during fermentation: the example of Sauvignon Blanc. Am J Enol Vitic 57(1):81–88Google Scholar
  15. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Lacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefGoogle Scholar
  16. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391CrossRefGoogle Scholar
  17. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, Van Helden J, André B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27(8):3065–3086CrossRefGoogle Scholar
  18. Grant-Preece PA, Pardon KH, Capone DL, Cordente AG, Sefton MA, Jeffery DW, Elsey GM (2010) Synthesis of wine thiol conjugates and labeled analogues: fermentation of the glutathione conjugate of 3-mercaptohexan-1-ol yields the corresponding cysteine conjugate and free thiol. J Agric Food Chem 58:1383–1389CrossRefGoogle Scholar
  19. Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12(1):35–73CrossRefGoogle Scholar
  20. Iraqui I, Vissers S, Bernard F, Craene JO, Boles E, Urrestarazu A, André B (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19:989–1001Google Scholar
  21. Jiranek V, Langridge P, Henschke PA (1995) Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am J Enol Vitic 46(1):75–83Google Scholar
  22. Kobayashi H, Takase H, Kaneko K, Tanzawa F, Takata R, Suzuki S, Konno T (2010) Analysis of S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-l-cysteine in Vitis vinifera L. cv. Koshu for aromatic wines. Am J Enol Vitic 61:176–185Google Scholar
  23. Lund CM, Thompson MK, Benkwitz F, Wohler MW, Triggs CM, Gardner R, Heymann H, Nicolau L (2009) New Zealand Sauvignon Blanc distinct flavor characteristics: sensory, chemical, and consumer aspects. Am J Enol Vitic 60(1):1–12Google Scholar
  24. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290(1–2):1–18CrossRefGoogle Scholar
  25. Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17(8):4282–4293Google Scholar
  26. Marks VD, Ho Sui SJ, Erasmus D, Van Der Merwe GK, Brumm J, Wasserman WW, Bryan J, Van Vuuren HJJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8(1):35–52Google Scholar
  27. Marks VD, Van Der Merwe GK, Van Vuuren HJJ (2008) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3(3):269–287CrossRefGoogle Scholar
  28. Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Santa Anna-Arriola S, Rodriguez AL, Aragon AD, Quiñones GA, Allen C, Werner-Washburne M (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 15(12):5295–5305CrossRefGoogle Scholar
  29. Richards KD, Goddard MR, Gardner RC (2009) A database of microsatellite genotypes for Saccharomyces cerevisiae. Anton Leeuw Int J G 96(3):355–359Google Scholar
  30. Riego L, Avendago A, DeLuna A, Rodríguez E, González A (2002) GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 293(1):79–85CrossRefGoogle Scholar
  31. Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20(16):1369–1385CrossRefGoogle Scholar
  32. Rowen DW, Esiobu N, Magasanik B (1997) Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae. J Bacteriol 179(11):3761–3766Google Scholar
  33. Salmon JM (1989) Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl Environ Microbiol 55(4):953–958Google Scholar
  34. Salmon JM, Barre P (1998) Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol 64(10):3831–3837Google Scholar
  35. Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282(8):5296–5301Google Scholar
  36. Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458(7236):342–345Google Scholar
  37. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3(1, Article 3). Available at: http://www.bepress.com/sagmb/vol3/iss1/art3
  38. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420CrossRefGoogle Scholar
  39. Smyth GK, Michaud J, Scott H (2005) The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9):2067–2075, http://bioinformatics.oxfordjournals.org/cgi/content/short/2021/2069/2067 CrossRefGoogle Scholar
  40. Stanbrough M, Rowen DW, Magasanik B (1995) Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci USA 92(21):9450–9454CrossRefGoogle Scholar
  41. Subileau M, Schneider R, Salmon JM, Degryse E (2008a) New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. J Agric Food Chem 56:9230–9235CrossRefGoogle Scholar
  42. Subileau M, Schneider R, Salmon JM, Degryse E (2008b) Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport. FEMS Yeast Res 8(5):771–780CrossRefGoogle Scholar
  43. Takagi H, Shichiri M, Takemura M, Mohri M, Nakamori S (2000) Saccharomyces cerevisiae Σ1278b has novel genes of the N-acetyltransferase gene superfamily required for l-proline analogue resistance. J Bacteriol 182(15):4249–4256CrossRefGoogle Scholar
  44. Thibon C, Marullo P, Claisse O, Cullin C, Dubourdieu D, Tominaga T (2008) Nitrogen catabolic repression controls Saccharomyces cerevisiae volatile thiols release during wine fermentation. FEMS Yeast Res 8:1076–1086CrossRefGoogle Scholar
  45. Tominaga T, Furrer A, Henry R, Dubourdieu D (1998a) Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon Blanc wines. Flavour Fragr J 13(3):159–162CrossRefGoogle Scholar
  46. Tominaga T, Murat ML, Dubourdieu D (1998b) Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. Cv. Sauvignon Blanc. J Agric Food Chem 46(3):1044–1048CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nathan K. Deed
    • 1
  • Hennie J. J. van Vuuren
    • 2
  • Richard C. Gardner
    • 1
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Wine Research CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations