Applied Microbiology and Biotechnology

, Volume 90, Issue 1, pp 89–95 | Cite as

Biomass production and nutrient uptake by Neochloris oleoabundans in an open trough system

  • Kyle E. Murray
  • Frank G. Healy
  • Rebecca S. McCord
  • Jeremy A. Shields
Biotechnological Products and Process Engineering


The purpose of this paper is to present biomass and nutrient uptake data from Neochloris oleoabundans production in an open trough system. The growth medium used was BG11, temperature ranged from 16.7 °C to 25.3 °C, and pH ranged from 5.52 to 9.94 because the customary pH increase during algal biomass production was moderated by incoming CO2 gas streams (atmospheric, 2%, 4%, and 6% CO2). Peak concentrations of algal biomass ranged from 643 to 970 mg L−1, specific growth rates ranged from 0.15 to 0.37 day−1, and doubling times ranged from 4.8 to 1.9 days. Carbon, nitrogen, and phosphorus were incorporated into the biomass at 0.05%, 8.3%, and 54% of supplied amounts. Open growth systems supplemented with CO2 should be designed to regulate medium pH within the range of 6.3 to 7.1. Future research should examine various media and alternative carbon sources to decrease doubling times, increase peak concentrations, and optimize nutrient uptake.


Biofuel Microalgae Wastewater treatment Carbon 



We acknowledge several components of the University of Texas at San Antonio (UTSA) including: the Texas Sustainable Energy Research Institute (SERI) for funding the construction of photo bioreactors, the Center for Water Research (CWR) for providing student and administrative support, the Office of the Vice President for Research Development for funding through the Collaborative Research Seed Grant Program (CRSGP), and various colleagues for use of equipment and facilities.


  1. Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Lett 39(3):215–233. doi: 10.1016/0378-1097(86)90447-7 CrossRefGoogle Scholar
  2. An J-Y, Sim S-J, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15(2):185–191CrossRefGoogle Scholar
  3. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  4. Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and culture media. J Ecol 30(2):284–325CrossRefGoogle Scholar
  5. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Proc: Proc Intens 48(6):1146–1151CrossRefGoogle Scholar
  6. Dauta A, Devaux J, Piquemal F, Boumnich L (1990) Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207(1):221–226CrossRefGoogle Scholar
  7. Dayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31(1):87–93. doi: 10.1016/j.biombioe.2006.05.001 CrossRefGoogle Scholar
  8. Erokhina LG, Shatilovich AV, Kaminskaya OP, Gilichinskii DA (2004) Spectral properties of ancient green algae from Antarctic Dry Valley permafrost. Microbiol 73(4):485–487CrossRefGoogle Scholar
  9. Findenegg GR (1979) Inorganic carbon transport in microalgae I: location of carbonic anhydrase and HCO3/OH exchange. Plant Sci Lett 17(1):101–108. doi: 10.1016/0304-4211(79)90168-8 CrossRefGoogle Scholar
  10. Goldman JC, Graham SJ (1981) Inorganic carbon limitation and chemical composition of two freshwater green microalgae. Appl Environ Microbiol 41(1):60–70Google Scholar
  11. Gouveia L, Oliveira AC (2008) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRefGoogle Scholar
  12. Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans utex #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826CrossRefGoogle Scholar
  13. Kondamudi N, Mohapatra SK, Misra M (2008) Spent coffee grounds as a versatile source of green energy. J Agric Food Chem 56(24):11757–11760CrossRefGoogle Scholar
  14. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1, Supplement 1):S75–S77CrossRefGoogle Scholar
  15. Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636CrossRefGoogle Scholar
  16. Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564CrossRefGoogle Scholar
  17. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496CrossRefGoogle Scholar
  18. Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995CrossRefGoogle Scholar
  19. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(1):1–61. doi: 10.1099/00221287-111-1-1 Google Scholar
  20. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefGoogle Scholar
  21. Shen Y, Yuan W, Pei Z, Mao E (2008) Culture of microalga Botryococcus in livestock wastewater. Trans ASABE 51(4):1395–1400Google Scholar
  22. Tao L, Aden A (2009) The economics of current and future biofuels. In Vitro Cell Dev Biol Plant 45(3):199–217CrossRefGoogle Scholar
  23. Volova TG, Kalacheva GS, Zhilo NO, Plotnikov VF (1998) Physiological and biochemical properties of the alga Botryococcus braunii. Russ J Plant Physiol 45(6):775–779Google Scholar
  24. Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718CrossRefGoogle Scholar
  25. Weetall H (1985) Studies on the nutritional requirements of the oil-producing alga Botryococcus braunii. Appl Biochem Biotechnol 11(5):377–391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kyle E. Murray
    • 1
  • Frank G. Healy
    • 2
  • Rebecca S. McCord
    • 1
  • Jeremy A. Shields
    • 1
  1. 1.Texas Sustainable Energy Research InstituteThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Department of BiologyTrinity UniversitySan AntonioUSA

Personalised recommendations