Applied Microbiology and Biotechnology

, Volume 89, Issue 5, pp 1275–1288 | Cite as

Light requirements in microalgal photobioreactors: an overview of biophotonic aspects

  • Ana P. Carvalho
  • Susana O. Silva
  • José M. Baptista
  • F. Xavier Malcata
Mini-Review

Abstract

In order to enhance microalgal growth in photobioreactors (PBRs), light requirement is one of the most important parameters to be addressed; light should indeed be provided at the appropriate intensity, duration, and wavelength. Excessive intensity may lead to photo-oxidation and -inhibition, whereas low light levels will become growth-limiting. The constraint of light saturation may be overcome via either of two approaches: increasing photosynthetic efficiency by genetic engineering, aimed at changing the chlorophyll antenna size; or increasing flux tolerance, via tailoring the photonic spectrum, coupled with its intensity and temporal characteristics. These approaches will allow an increased control over the illumination features, leading to maximization of microalgal biomass and metabolite productivity. This minireview briefly introduces the nature of light, and describes its harvesting and transformation by microalgae, as well as its metabolic effects under excessively low or high supply. Optimization of the photosynthetic efficiency is discussed under the two approaches referred to above; the selection of light sources, coupled with recent improvements in light handling by PBRs, are chronologically reviewed and critically compared.

Keywords

Flashing light effect Microalgae Photosynthesis Photobioreactor Photo-inhibition Photo-oxidation 

Notes

Acknowledgements

Financial support for author Carvalho via a postdoctoral fellowship (SFRH/BPD/26424/2006), funded by POCI 2010 (Portugal) with the support of FSE (Social European Found) and under the supervision of author Malcata, is hereby gratefully acknowledged. This work received partial financial support via projects OPTIC-ALGAE (PTDC/BIO/71710/2006) and MICROPHYTE: (PTDC/EBB-EBI/102728/2008), funded also by POCI 2010 with the support of FSE and both under the coordination of author Malcata. The access to electronic databases and literature references made available by CBQF should be formally quoted here.

References

  1. Anderson G (2002) Photobioreactor design. ASAE/CSAE North Central Intersectional Meeting Presentation MBSK02-216, Saskatoon, CanadaGoogle Scholar
  2. Bayless DJ, Kremer G, Vis M, Stuart B, Shi L, Ono E, Cuello JL (2006) Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J Environ Eng Manag 16:209–215Google Scholar
  3. Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Clamydomonas reinhardtii. J Biotechnol 142:70–77CrossRefGoogle Scholar
  4. Bertling K, Hurse TJ, Kappler U, Rakic AD (2006) Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol Bioeng 94:337–345CrossRefGoogle Scholar
  5. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  6. Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–218Google Scholar
  7. Carvalho AP, Malcata FX (2003) Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperature. Biotechnol Prog 19:1128–1135CrossRefGoogle Scholar
  8. Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiation and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552CrossRefGoogle Scholar
  9. Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604CrossRefGoogle Scholar
  10. Chen CY, Lee CM, Chang JS (2006a) Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors. Biochem Eng J 32:33–42CrossRefGoogle Scholar
  11. Chen CY, Lee CM, Chang JS (2006b) Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3–5 using optical-fiber-assisted illumination systems. Int J Hydrogen Energy 31:2345–2355CrossRefGoogle Scholar
  12. Contreras S, Soto MA, Toha JC (1979) Applied microalgae photosynthesis: discharge mechanisms in highly illuminated cells. Biotechnol Bioeng 21:159–165CrossRefGoogle Scholar
  13. Danion A, Disdier J, Guillard C, Abdelmalek F, Renault NJ (2004) Characterization and study of a single TiO2-coated optical fiber reactor. Appl Catal B Environ 52:213–223CrossRefGoogle Scholar
  14. Dubinsky Z, Matsukawa R, Karube I (1995) Photobiological aspects of algal mass culture. J Mar Biotechnol 2:61–65Google Scholar
  15. Everett K (2002) Patent MX PA04008174 A: LED array for illuminating cell well plates and automated rack system for handling the sameGoogle Scholar
  16. Fleck-Schneider P, Lehr F, Posten C (2007) Modelling of growth and product formation of Porphyridium purpureum. J Biotechnol 32:134–141CrossRefGoogle Scholar
  17. Goldman JC (1980) Physiological aspects in algal mass cultures. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 343–359Google Scholar
  18. Gordon JM, Polle JEW (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975CrossRefGoogle Scholar
  19. Grima EM, Pérez JAS, Camacho FG, Sánchez JLG, Fernández FGA, Alonso DL (1994) Outdoor cultivation of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol 37:159–166CrossRefGoogle Scholar
  20. Grobbelaar JU (2009) Upper limits of photosynthetic productivity and problems of scaling. J Appl Phycol 21:519–522CrossRefGoogle Scholar
  21. Jesus C, Silva SFO, Castanheira M, González-Aguilar G, Frazão O, Jorge PAS, Baptista JM (2009) Measurement of acetic acid using a fibre Bragg grating interferometer. Meas Sci Technol 20:125201CrossRefGoogle Scholar
  22. Kim ZH, Kim SH, Lee HS, Lee CG (2006) Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme Microb Technol 39:414–419CrossRefGoogle Scholar
  23. Kommareddy A, Anderson G (2002) Photobioreactor design. ASAE Annual International Meeting Presentation MBSK02-216, Saskatoon, CanadaGoogle Scholar
  24. Kommareddy A, Anderson G (2003) Study of light as a parameter in the growth of algae in a Photo-Bio-Reactor (PBR). ASAE Annual International Meeting Presentation 034057, Las Vegas, USAGoogle Scholar
  25. Kommareddy A, Anderson G (2004) Study of light requirements of a photobioreactor. North Central ASAE/CSAE Conference Presentation MB04-111, Winnipeg, USAGoogle Scholar
  26. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380CrossRefGoogle Scholar
  27. Lee YK (1990) Genetic and technological improvement with respect to mass cultivation of microalgae. In: Nga BH, Lee YK (eds) Microbiology applications in food biotechnology. Elsevier Applied Science, London, pp 61–73Google Scholar
  28. Lee CG, Palsson BØ (1996) Photoacclimation of Chlorella vulgaris to red light from light-emitting diodes leads to autospore release following each cellular division. Biotechnol Prog 12:249–256CrossRefGoogle Scholar
  29. Masojidek J, Koblizek M, Torzillo G (2004) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 20–39Google Scholar
  30. Matsunaga T, Takeyama H, Suso H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N (1981) Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light diffusing optical fibers. Appl Biochem Biotechnol 28:157–167Google Scholar
  31. Mauseth JD (1991) Plant physiology and development. In: Mauseth JD (ed) Botany. Saunders College Publishing, USA, pp 239–271Google Scholar
  32. Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16:21807–21820CrossRefGoogle Scholar
  33. Molina E, Fernandez F, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131CrossRefGoogle Scholar
  34. Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers. Biotechnol Bioeng Symp 15:331–345Google Scholar
  35. Nakajima Y, Tsuzuki M, Ueda R (2001) Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J Appl Phycol 13:95–101CrossRefGoogle Scholar
  36. Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184CrossRefGoogle Scholar
  37. Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297CrossRefGoogle Scholar
  38. Packer M (2009) Algae capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Pol 37:3428–3437CrossRefGoogle Scholar
  39. Park KH, Lee CG (2001) Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density. Biotechnol Bioprocess Eng 6:189–193CrossRefGoogle Scholar
  40. Pirt SJ (1982) Microbial photosynthesis in the harnessing of solar-energy. J Chem Technol Biotechnol 32:198–202CrossRefGoogle Scholar
  41. Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon-dioxide—design and performance. J Chem Technol Biotechnol 33:35–58CrossRefGoogle Scholar
  42. Plaza M, Herrero M, Cifuentes A, Ibanez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170CrossRefGoogle Scholar
  43. Richmond A, Zou N (1999) Efficient utilization of high photon irradiance for mass production of photoautotrophic microorganisms. J Appl Phycol 11:123–127CrossRefGoogle Scholar
  44. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332CrossRefGoogle Scholar
  45. Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236CrossRefGoogle Scholar
  46. Silva SFO, Frazão O, Caldas P, Santos JL, Araújo FM, Ferreira LA (2008) Optical fibre refractometer based on a Fabry-Pérot interferometer. Opt Eng 47:054403CrossRefGoogle Scholar
  47. Tennessen DJ, Bula RJ, Sharkey TD (1995) Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth Res 44:261–269CrossRefGoogle Scholar
  48. Tredici MR (1999) Bioreactors, photo. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 1. Wiley, New York, pp 395–419Google Scholar
  49. Vonshak A, Abeliovich A, Boussiba S (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185CrossRefGoogle Scholar
  50. Wang CY, Fu CC, Liu YC (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25CrossRefGoogle Scholar
  51. Wu JCS, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal A Gen 296:194–200CrossRefGoogle Scholar
  52. Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189CrossRefGoogle Scholar
  53. Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ana P. Carvalho
    • 1
  • Susana O. Silva
    • 1
    • 2
  • José M. Baptista
    • 2
    • 3
  • F. Xavier Malcata
    • 4
    • 5
  1. 1.CBQF/Escola Superior de BiotecnologiaUniversidade Católica PortuguesaPortoPortugal
  2. 2.INESC PortoPortoPortugal
  3. 3.Centro de Competência de Ciências Exactas e de EngenhariaUniversidade da MadeiraFunchalPortugal
  4. 4.ISMAI–Instituto Superior da MaiaAvioso S. PedroPortugal
  5. 5.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations