Applied Microbiology and Biotechnology

, Volume 89, Issue 5, pp 1267–1273 | Cite as

Glucoamylases: structural and biotechnological aspects

  • Julia Marín-Navarro
  • Julio Polaina


Glucoamylases, one of the main types of enzymes involved in starch hydrolysis, are exo-acting enzymes that release consecutive glucose units from the non-reducing ends of starch molecules. Glucoamylases are microbial enzymes, present in bacteria, archaea, and fungi but not in plants and animals. Structurally, they are classified in family 15 of glycoside hydrolases and characterised by the invariable presence of a catalytic domain with (α/α)6-fold, often bound to a non-catalytic domain of diverse origin and function. Fungal glucoamylases are biotechnologically very important as they are used industrially in large amounts and have been extensively studied during the past 30 years. Prokaryotic glucoamylases are of biotechnological relevance for being generally thermophilic enzymes, active at elevated temperatures.


Family 15 glycoside hydrolases Industrial enzyme Starch Starch-binding domain 



This work was funded by Spanish Ministerio de Ciencia e Innovación grant BIO2007-6708-C04-02.


  1. Adam AC, Latorre-Garcia L, Polaina J (2004) Structural analysis of glucoamylase encoded by the STA1 gene of Saccharomyces cerevisiae (var. diastaticus). Yeast 21:379–388CrossRefGoogle Scholar
  2. Aleshin A, Golubev A, Firsov LM, Honzatko RB (1992) Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-Å resolution. J Biol Chem 267:19291–19298Google Scholar
  3. Aleshin AE, Feng PH, Honzatko RB, Reilly PJ (2003) Crystal structure and evolution of prokaryotic glucoamylase. J Mol Biol 327:61–73CrossRefGoogle Scholar
  4. Allen MJ, Coutinho PM, Ford (1998) Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Protein Eng 11:783–788CrossRefGoogle Scholar
  5. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781CrossRefGoogle Scholar
  6. Bott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M, Hansson H (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 47:5746–5754CrossRefGoogle Scholar
  7. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active ENZYMES database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefGoogle Scholar
  8. Christiansen C, Hachem MA, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20—diversity, structure, and function. FEBS J 276:5006–5029CrossRefGoogle Scholar
  9. Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional and evolutionary relationships. Protein Struct Funct Genet 29:334–347CrossRefGoogle Scholar
  10. Dock C, Hess M, Antranikian G (2008) A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum. Appl Microbiol Biotechnol 78:105–114CrossRefGoogle Scholar
  11. Fagerström R (1994) Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei. Enzyme Microb Technol 16:36–42CrossRefGoogle Scholar
  12. Fierobe HP, Stoffer BB, Frandsen TP, Svensson B (1996) Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Biochemistry 35:8696–8704CrossRefGoogle Scholar
  13. Hostinová E, Gašperík J (2010) Yeast glucoamylases: molecular-genetic and structural characterization. Biol Sect Cell Mol Biol 65:559–568Google Scholar
  14. Jorgensen AD, Nohr J, Kastrup JS, Gajhede M, Sigurskjold B, Sauer J, Svergun DI, Svensson B, Vestergaard B (2008) Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimmers in solution. J Biol Chem 283:14772–14780CrossRefGoogle Scholar
  15. Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH (2004) Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70:3933–3940CrossRefGoogle Scholar
  16. Kim JH, Kim HR, Lim MH, Ko HM, Chin JE, Lee HB, Kim IC, Bai S (2010) Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol Lett 32:713–719CrossRefGoogle Scholar
  17. Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255CrossRefGoogle Scholar
  18. Latorre-Garcia L, Adam AC, Manzanares P, Polaina J (2005) Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. J Biotechnol 118:167–176CrossRefGoogle Scholar
  19. Leemhuis H, Kelly RM, Dijkhuizen L (2010) Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol 85:823–835CrossRefGoogle Scholar
  20. Li Y, Coutinho PM, Ford N (1998) Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Protein Eng 11:661–667CrossRefGoogle Scholar
  21. Lin SC, Liu WT, Liu SH, Chou WI, Hsiung BK, Lin IP, Sheu CC, Chang MDT (2007) Role of the linker region in the expression of Rhyzopus oryzae glucoamylase. BMC Biochem 8:9CrossRefGoogle Scholar
  22. Liu HL, Wang WC (2003) Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16:19–25CrossRefGoogle Scholar
  23. Liu HL, Doleyres Y, Coutinho PM, Ford C, Reilly PJ (2000) Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability. Protein Eng 13:655–659CrossRefGoogle Scholar
  24. Liu YN, Lai YT, Chou WI, Chang MDT, Lyu PC (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 403:21–30CrossRefGoogle Scholar
  25. Machovič M, Janeček S (2006a) The evolution of putative starch-binding domains. FEBS Lett 580:6349–6356CrossRefGoogle Scholar
  26. Machovič M, Janeček S (2006b) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63:2710–2724CrossRefGoogle Scholar
  27. Marín-Navarro J, Gurgu L, Alamar S, Polaina J (2010) Structural and functional analysis of hybrid enzymes generated by domain shuffling between Saccharomyces cerevisiae (var. diastaticus) Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 β-glucosidase. Appl Microbiol Biotechnol. doi: 10.1007/s00253-010-2845-3
  28. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892CrossRefGoogle Scholar
  29. Ohnishi H, Kitamura H, Minowa T, Sakai H, Ohta T (1992) Molecular cloning of a glucoamylase gene from a thermophile Clostridium and kinetics of the cloned enzyme. Eur J Biochem 207:413–418CrossRefGoogle Scholar
  30. Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 8:63–72CrossRefGoogle Scholar
  31. Rodríguez-Sanoja R, Oviedo N, Sánchez S (2005) Microbial starch-binding domain. Curr Opin Microbiol 8:260–267CrossRefGoogle Scholar
  32. Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Migorodskaya E, Harrison M, Roepstorff P, Svensson B (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293CrossRefGoogle Scholar
  33. Ševčik J, Solovicová A, Hostinová E, Gašperík J, Wilson K, Dauter Z (1998) Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 Å resolution. Acta Crystallogr Sect D 54:854–866CrossRefGoogle Scholar
  34. Ševčik J, Hostinová E, Solovicová A, Gašperík J, Dauter Z, Wilson KS (2006) Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J 273:2161–2171CrossRefGoogle Scholar
  35. Sorimachi K, Jacks AJ, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259:970–987CrossRefGoogle Scholar
  36. Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to ß-cyclodextrin. Structure 5:647–661CrossRefGoogle Scholar
  37. Svensson B, Larsen K, Svendsen I, Boel E (1983) The complete amino acid sequence of the glycoprotein, glucoamylase G1, from Aspergillus niger. Carlsberg Res Commun 48:529–544CrossRefGoogle Scholar
  38. Svensson B, Larsen K, Gunnarsson A (1986) Characterization of glucoamylase G2 from Aspergillus niger. Eur J Biochem 154:497–502CrossRefGoogle Scholar
  39. Svensson B, Hespersen H, Sierks MR, MacGregor EA (1989) Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264:309–311Google Scholar
  40. Synowiecki J (2007) The use of starch processing enzymes in the food industry. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, Dordrecht, pp 19–34Google Scholar
  41. Tung JY, Chang MDT, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ (2008) Crystal structures of the starch-binding domain from Rhyzopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 416:27–36CrossRefGoogle Scholar
  42. Uotsu-Tomita R, Tonozuka T, Sakai H, Sakano Y (2001) Novel glucoamylasetype enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the alphaamylase genes. Appl Microbiol Biotechnol 56:465–473CrossRefGoogle Scholar
  43. Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11:234–242CrossRefGoogle Scholar
  44. Wang Y, Fuchs E, da Silva R, McDaniel A, Seibel J, Ford C (2006) Improvement of Aspergillus niger glucoamylase thermostability by directed evolution. Starch/Starke 58:501–508CrossRefGoogle Scholar
  45. Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498CrossRefGoogle Scholar
  46. Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2010) Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109–115CrossRefGoogle Scholar
  47. Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y (2010) Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 87:225–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Instituto de Agroquímica y Tecnología de AlimentosConsejo Superior de Investigaciones CientíficasPaternaSpain

Personalised recommendations