Advertisement

Applied Microbiology and Biotechnology

, Volume 90, Issue 2, pp 615–623 | Cite as

The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

  • Nicolas Seghezzi
  • Patrick Amar
  • Brian Koebmann
  • Peter R. Jensen
  • Marie-Joëlle VirolleEmail author
Applied Genetics and Molecular Biotechnology

Abstract

Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so, the sequences located upstream, between and downstream of the −35 and −10 consensus promoter sequences were completely randomized and some variability was introduced in the −35 (position 6) and −10 (positions 3, 4 and 5) hexamers recognized by the major vegetative sigma factor HrdB. The synthetic promoters were cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different concentrations of neomycin (20, 50, and 100 μg ml−1). Promoter strengths varied up to 12-fold, in small increments of activity increase, as determined by reverse transcriptase-PCR. This collection of promoters of various strengths can be useful for the fine-tuning of gene expression in genetic engineering projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters are more G rich than those of the weak promoters.

Keywords

Streptomyces Synthetic promoters Promoter strength aphII Neomycin 

Notes

Acknowledgements

This work was supported by the European program ACTINOGEN (http://www.swan.ac.uk/ils/Research/BioMed/ActinoGen/), the Centre National de la Recherche Scientifique (http://www.cnrs.fr/), the University Paris Sud 11 (http://www.u-psud.fr), and the Pôle de Recherche et d'Enseignement supérieur UniverSud Paris (http://www.universud-paris.fr).

The authors wish to thank Guislaine Refregier and Barry Holland for stimulating discussions, and we are most grateful to Jeffrey Mellin for correction of the manuscript.

References

  1. Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19(3):327–336CrossRefGoogle Scholar
  2. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147CrossRefGoogle Scholar
  3. Bibb MJ, Buttner MJ (2003) The Streptomyces coelicolor developmental transcription factor sigmaBldN is synthesized as a proprotein. J Bacteriol 185(7):2338–2345CrossRefGoogle Scholar
  4. Bibb MJ, White J, Ward JM, Janssen GR (1994) The mrna for the 23s rrna methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14(3):533–545CrossRefGoogle Scholar
  5. Bland C, Newsome AS, Markovets AA (2010) Promoter prediction in E. coli based on SIDD profiles and artificial neural networks. BMC Bioinform 11(Suppl 6):S17CrossRefGoogle Scholar
  6. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion. J Biol Chem 283(37):25186–25199CrossRefGoogle Scholar
  7. Bourn WR, Babb B (1995) Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res 23(18):3696–3703CrossRefGoogle Scholar
  8. Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat reviews 2(1):57–65CrossRefGoogle Scholar
  9. Buttner MJ, Brown NL (1987) Two promoters from the Streptomyces plasmid pIJ101 and their expression in Escherichia coli. Gene 51(2–3):179–186CrossRefGoogle Scholar
  10. Buttner MJ, Chater KF, Bibb MJ (1990) Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J Bacteriol 172(6):3367–3378Google Scholar
  11. Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4(6):667–673CrossRefGoogle Scholar
  12. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Weblogo: a sequence logo generator. Genome Res 14(6):1188–1190CrossRefGoogle Scholar
  13. Deng Z, Kieser T, Hopwood DA (1986) Expression of a Streptomyces plasmid promoter in Escherichia coli. Gene 43(3):295–300CrossRefGoogle Scholar
  14. Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat reviews 7(1):36–49CrossRefGoogle Scholar
  15. Flores S, de Anda-Herrera R, Gosset G, Bolivar FG (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87(4):485–494CrossRefGoogle Scholar
  16. Goodsell DS, Dickerson RE (1994) Bending and curvature calculations in b-DNA. Nucleic Acids Res 22(24):5497–5503CrossRefGoogle Scholar
  17. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466CrossRefGoogle Scholar
  18. Guo FB, Yu XJ (2007) Separate base usages of genes located on the leading and lagging strands in Chlamydia muridarum revealed by the z curve method. BMC Genomics 8:366CrossRefGoogle Scholar
  19. Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries—tuning of gene expression. Trends Biotechnol 24(2):53–55CrossRefGoogle Scholar
  20. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci USA 101(39):14031–14035CrossRefGoogle Scholar
  21. Hook-Barnard IG, Hinton DM (2007) Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul Syst Bio 1:275–293Google Scholar
  22. Hook-Barnard IG, Hinton DM (2009) The promoter spacer influences transcription initiation via sigma70 region 1.1 of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 106(3):737–742CrossRefGoogle Scholar
  23. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87Google Scholar
  24. Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast Chichester 20(15):1263–1272CrossRefGoogle Scholar
  25. Kang JG, Hahn MY, Ishihama A, Roe JH (1997) Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25(13):2566–2573CrossRefGoogle Scholar
  26. Karlin S (1999) Bacterial DNA strand compositional asymmetry. Trends Microbiol 7(8):305–308CrossRefGoogle Scholar
  27. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, Norwich Research Park, ColneyGoogle Scholar
  28. Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH (2005) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57(5):1252–1264CrossRefGoogle Scholar
  29. Mann S, Chen YP (2010) Bacterial genomic G+C composition-eliciting environmental adaptation. Genomics 95(1):7–15CrossRefGoogle Scholar
  30. Morton BR (1999) Strand asymmetry and codon usage bias in the chloroplast genome of Euglena gracilis. Proc Natl Acad Sci USA 96(9):5123–5128CrossRefGoogle Scholar
  31. Mrazek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95(7):3720–3725CrossRefGoogle Scholar
  32. Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ (2001) Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmar regulon. Mol Microbiol 42(4):1007–1020CrossRefGoogle Scholar
  33. Potuckova L, Kelemen GH, Findlay KC, Lonetto MA, Buttner MJ, Kormanec J (1995) A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17(1):37–48CrossRefGoogle Scholar
  34. Prosseda G, Mazzola A, Di Martino ML, Tielker D, Micheli G, Colonna B (2010) A temperature-induced narrow DNA curvature range sustains the maximum activity of a bacterial promoter in vitro. Biochemistry 49(13):2778–2785CrossRefGoogle Scholar
  35. Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiol Read 152(Pt 4):1011–1019CrossRefGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  37. Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36(4):493–498CrossRefGoogle Scholar
  38. Solem C, Koebmann B, Jensen PR (2008) The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Biotechnol Appl Biochem 50(Pt 1):35–40CrossRefGoogle Scholar
  39. Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20(5):961–974CrossRefGoogle Scholar
  40. Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166(1):133–137CrossRefGoogle Scholar
  41. Tanaka K, Shiina T, Takahashi H (1991) Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2) having similarity to rpoD genes. Mol Gen Genet 229(3):334–340CrossRefGoogle Scholar
  42. Tornoe J, Kusk P, Johansen TE, Jensen PR (2002) Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites. Gene 297(1–2):21–32CrossRefGoogle Scholar
  43. van Wezel GP, Krab IM, Douthwaite S, Bibb MJ, Vijgenboom E, Bosch L (1994) Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon. Microbiol Read 140(Pt 12):3357–3365CrossRefGoogle Scholar
  44. Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ (1986) Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203(3):468–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nicolas Seghezzi
    • 1
  • Patrick Amar
    • 2
  • Brian Koebmann
    • 3
  • Peter R. Jensen
    • 3
  • Marie-Joëlle Virolle
    • 1
    Email author
  1. 1.Institut de Génétique et MicrobiologieUMR8621 CNRS Université Paris SudOrsayFrance
  2. 2.Laboratoire de Recherche en InformatiqueUMR8623 CNRS Université Paris SudOrsayFrance
  3. 3.Section of Molecular Microbiology, BioCentrum-DTUTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations