Applied Microbiology and Biotechnology

, Volume 89, Issue 6, pp 1741–1750 | Cite as

Continuous d-lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU 41

  • Yukihiro Tashiro
  • Wataru Kaneko
  • Yanqi Sun
  • Keisuke Shibata
  • Kentaro Inokuma
  • Takeshi Zendo
  • Kenji Sonomoto
Biotechnological Products and Process Engineering


We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.


d-lactic acid fermentation Lactobacillus delbrueckii subsp. lactis QU 41 Continuous culture High cell density Thermotolerant 


  1. Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2010) Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol. doi: 10.1007/s00253-010-2986-4 Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  3. Bai DM, Wei Q, Yan ZH, Zhao XM, Li XG, Xu SM (2003) Fed-batch fermentation of Lactobacillus lactis for hyper-production of l-lactic acid. Biotechnol Lett 25:1833–1835CrossRefGoogle Scholar
  4. Bi C, Zhang X, Rice JD, Ingram LO, Preston JF (2009) Genetic engineering of Enterobacter asburiae strain JDR-1for efficient d(–) lactic acid production from hemicellulose hydrolysate. Biotechnol Lett 31:1551–1557CrossRefGoogle Scholar
  5. Calabia BP, Tokiwa Y (2007) Production of d-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332CrossRefGoogle Scholar
  6. Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389Google Scholar
  7. Datta R, Tsai S, Bonsignore P, Moon SH, Frank JH (1995) Technology and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231CrossRefGoogle Scholar
  8. de Jong SJ, van Eerdenbrugh B, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J Control Release 71:261–275CrossRefGoogle Scholar
  9. Demirci A, Pometto AL III (1992) Enhanced production of d(−)-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649. J Ind Microbiol 11:23–28CrossRefGoogle Scholar
  10. Demirci A, Cotton JC, Pometto AL III, Harkins KR, Hinz PN (2003) Resistance of Lactobacillus casei in plastic-composite-support biofilm reactors during liquid membrane extraction and optimization of the lactic acid extraction system. Biotechnol Bioeng 83:749–759CrossRefGoogle Scholar
  11. Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of d-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4:1021–1027CrossRefGoogle Scholar
  12. Hovendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107CrossRefGoogle Scholar
  13. Ikeda Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRefGoogle Scholar
  14. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H (2006) d-lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101:172–176CrossRefGoogle Scholar
  15. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534CrossRefGoogle Scholar
  16. Joshi DS, Singhvi MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for d-lactic acid production. Biotechnol Lett 32:517–520CrossRefGoogle Scholar
  17. Miura S, Dwiarti L, Arimura T, Hoshino M, Tiejun L, Okabe M (2004) Enhanced production of l-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196. J Biosci Bioeng 97:19–23Google Scholar
  18. Nolasco-Hipolito C, Matsunaka T, Kobayashi G, Sonomoto K, Ishizaki A (2002) Synchronized fresh cell bioreactor system for continuous l-(+)-lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. J Biosci Bioeng 93:281–287CrossRefGoogle Scholar
  19. Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009a) Efficient production of optically pure d-lactic acid from raw corn starch by using a genetically modified l-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467CrossRefGoogle Scholar
  20. Okano K, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2009b) Homo-d-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:5175–5178CrossRefGoogle Scholar
  21. Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009c) Improved production of homo-d-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861CrossRefGoogle Scholar
  22. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454CrossRefGoogle Scholar
  23. Oshiro M, Shinto H, Tashiro Y, Miwa N, Sekiguchi T, Okamoto M, Ishizaki A, Sonomoto K (2009) Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. J Biosci Bioeng 108:376–384CrossRefGoogle Scholar
  24. Senthuran A, Senthuran V, Mattiasson B, Kaul R (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol Bioeng 55:841–853CrossRefGoogle Scholar
  25. Shi Z, Shimizu K, Iijima S, Izumi R, Matsumoto K, Kobayashi T (1992) Development of dual on-line analyzer and its application to fed-batch lactic acid fermentation. J Ferment Bioeng 73:22–25CrossRefGoogle Scholar
  26. Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microb Technol 41:149–155CrossRefGoogle Scholar
  27. Shukla VB, Zhou S, Yomano LP, Shanmugam KT, Preston JF, Ingram LO (2004) Production of d(−)-lactate from sucrose and molasses. Biotechnol Lett 26:689–693CrossRefGoogle Scholar
  28. Stanbury PF, Whitaker A, Hall SJ (1995) Principles of fermentation technology. Butterworth-Heinemann, OxfordGoogle Scholar
  29. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217CrossRefGoogle Scholar
  30. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K (2005) High production of acetone-butanol-ethanol with high cell density culture by cell-recycling and bleeding. J Biotechnol 120:197–206CrossRefGoogle Scholar
  31. Tiwari KP, Pandey A, Mishra N (1979) Lactic acid production from molasses by mixed population of Lactobacilli. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Zweite Naturwiss Abt Mikrobiol Landwirtsch Technol Umweltschutzes 134:544–546Google Scholar
  32. Tsuji F (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43:1789–1796CrossRefGoogle Scholar
  33. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896CrossRefGoogle Scholar
  34. Wee YJ, Yun JS, Lee YY, Zeng AP, Ryu HW (2005) Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater. J Biosci Bioeng 99:104–108CrossRefGoogle Scholar
  35. Yáñez R, Moldes AB, Alonso JL, Parajó JC (2003) Production of d (−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164CrossRefGoogle Scholar
  36. Yu L, Lei T, Ren X, Pei X, Feng Y (2008) Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J 39:496–502CrossRefGoogle Scholar
  37. Yun JS, Wee YJ, Ryu HW (2003) Production of optically pure l-(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb Technol 33:416–423CrossRefGoogle Scholar
  38. Zayed G, Winter J (1995) Batch and continuous production of lactic acid from salt whey using free and immobilized cultures of lactobacilli. Appl Microbiol Biotechnol 44:362–366CrossRefGoogle Scholar
  39. Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yukihiro Tashiro
    • 1
  • Wataru Kaneko
    • 2
  • Yanqi Sun
    • 2
  • Keisuke Shibata
    • 2
  • Kentaro Inokuma
    • 2
  • Takeshi Zendo
    • 2
  • Kenji Sonomoto
    • 2
    • 3
  1. 1.Department of Life StudySeinan Jo Gakuin University Junior CollegeFukuokaJapan
  2. 2.Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan
  3. 3.Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture CenterKyushu UniversityFukuokaJapan

Personalised recommendations