Advertisement

Applied Microbiology and Biotechnology

, Volume 89, Issue 4, pp 867–877 | Cite as

Genetically engineered microbial biosensors for in situ monitoring of environmental pollution

  • Hae Ja ShinEmail author
Mini-Review

Abstract

Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.

Keywords

Microbial biosensor Genetically engineered In situ environmental monitoring 

Notes

Acknowledgment

This study was supported by a Frontier Project grant from Dongseo University.

References

  1. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585CrossRefGoogle Scholar
  2. Bahl MI, Hansen LH, Licht TR, Sørensen SJ (2004) In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine. Antimicrob Agents Chemother 48:1112–1117CrossRefGoogle Scholar
  3. Baumstark-Khan C, Cioara K, Rettberg P, Horneck G (2005) Determination of geno- and cytotoxicity of groundwater and sediments using the recombinant SWITCH test. J Environ Sci Health 40:245–263CrossRefGoogle Scholar
  4. Bechor O, Smulski DR, Van Dyk TK, LaRossa RA, Belkin S (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fab’::lux fusions. J Biotechnol 94:125–132CrossRefGoogle Scholar
  5. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212CrossRefGoogle Scholar
  6. Ben-Yoav H, Elad T, Shlomovits O, Belkin S, Shacham-Diamand Y (2009) Optical modeling of bioluminescence in whole cell biosensors. Biosens Bioelectron 24:1969–1973CrossRefGoogle Scholar
  7. Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290CrossRefGoogle Scholar
  8. Biran I, Rissin DM, Ron EZ, Walt DR (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315:106–113CrossRefGoogle Scholar
  9. Bjerketorp J, Håkansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Microbiol 17:43–49Google Scholar
  10. Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B Chem 85:179–185CrossRefGoogle Scholar
  11. Burmølle M, Hansen LH, Oregaard G, Sørensen SJ (2003) Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol 45:226–236CrossRefGoogle Scholar
  12. Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17:433–440CrossRefGoogle Scholar
  13. Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compound in soils. J App Microbiol 104:141–151Google Scholar
  14. del Busto-Ramos M, Budzik M, Corvalan C, Morgan M, Turco R, Nivens D, Applegate B (2008) Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy. Appl Microbiol Biotechnol 78:573–580CrossRefGoogle Scholar
  15. Diaz E, Prieto MA (2000) Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotech 11:467–475CrossRefGoogle Scholar
  16. Diplock EE, Mardlin DP, Killham KS, Paton GI (2009) Predicting bioremediation of hydrocarbons: laboratory to field scale. Environ Pollut 157:1831–1840CrossRefGoogle Scholar
  17. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353CrossRefGoogle Scholar
  18. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209CrossRefGoogle Scholar
  19. Fujimoto H, Wakabayashi M, Yamashiro H, Maeda I, Isoda K, Kondoh M, Kawase M, Miyasaka H, Yagi K (2006) Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl Microbiol Biotechnol 73:332–338CrossRefGoogle Scholar
  20. Galvão TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotech 17:34–42CrossRefGoogle Scholar
  21. Gu MB, Kim BC, Cho J, Hansen PD (2001) The continuous monitoring of field water samples with a novel multi-channel two-stage mini-bioreactor system. Environ Monit Assess 70:71–81CrossRefGoogle Scholar
  22. Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342CrossRefGoogle Scholar
  23. Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494CrossRefGoogle Scholar
  24. Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors—are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280CrossRefGoogle Scholar
  25. Hock B, Seifert M, Kramer K (2002) Engineering receptors and antibodies for biosensors. Biosens Bioelectron 17:239–249CrossRefGoogle Scholar
  26. Horsburgh AM, Mardlin DP, Turner NL, Henkler R, Strachan N, Glover LA, Paton GI, Killham K (2002) On-line microbial biosensing and fingerprinting of water pollutants. Biosens Bioelectron 17:495–501CrossRefGoogle Scholar
  27. Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 21:5168–5171CrossRefGoogle Scholar
  28. Keane A, Phoenix P, Ghoshal S, Lau PCK (2002) Exposing culprit organic pollutants: a review. J Microbiol Meth 49:103–119CrossRefGoogle Scholar
  29. Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18:1015–1021CrossRefGoogle Scholar
  30. Kim MN, Park HH, Lim WK, Shin HJ (2005) Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Meth 60:235–245CrossRefGoogle Scholar
  31. Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76:2902–2909CrossRefGoogle Scholar
  32. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500–507CrossRefGoogle Scholar
  33. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210CrossRefGoogle Scholar
  34. Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitropenyl-substituted organophosphate nerve agents. Environ Sci Technol 39:8853–8857CrossRefGoogle Scholar
  35. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190CrossRefGoogle Scholar
  36. Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T (2006) Electrochemical mutagen screening using microbial chip. Biosens Bioelectron 21:1202–1209CrossRefGoogle Scholar
  37. Marqués S, Aranda-Olmedo I, Ramos JL (2006) Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotech 17:50–56CrossRefGoogle Scholar
  38. Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27CrossRefGoogle Scholar
  39. Mitchell RJ, Gu MB (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol 64:46–52CrossRefGoogle Scholar
  40. Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorous hydrolase. Biosens Bioelectron 16:433–437CrossRefGoogle Scholar
  41. Niles DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4:77–82CrossRefGoogle Scholar
  42. Norman A, Hansen LH, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl Environ Microbiol 71:2338–2346CrossRefGoogle Scholar
  43. Oda Y, Funasaka K, Kitano M, Nakama A, Yoshikura T (2004) Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ Mol Mutagen 43:10–19CrossRefGoogle Scholar
  44. Paitan Y, Biran D, Biran I, Shechter N, Babai R, Rishpon J, Ron EZ (2003) On-line and in situ biosensors for monitoring environmental pollution. Biotech Adv 22:27–33CrossRefGoogle Scholar
  45. Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, Ron EZ (2004) Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335:175–183CrossRefGoogle Scholar
  46. Park HH, Lee HY, Lim WK, Shin HJ (2005a) NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch Biochem Biophys 434:67–74CrossRefGoogle Scholar
  47. Park HH, Lim WK, Shin HJ (2005b) In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim Biophys Acta 1725:247–255Google Scholar
  48. Park SM, Park HH, Lim WK, Shin HJ (2003) A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J Biotechnol 103:227–236CrossRefGoogle Scholar
  49. Patel PD (2006) Overview of affinity biosensors in food analysis. J AOAC Int 89:805–818Google Scholar
  50. Paton GI, Reid BJ, Semple KT (2009) Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ Pollut 157:1643–1648CrossRefGoogle Scholar
  51. Petänen T, Virta M, Karp M, Romantschuk M (2001) Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb Ecol 41:360–368Google Scholar
  52. Pooley DT, Larsson J, Jones G, Rayner-Brandes MH, Lloyd D, Gibson C, Stewart WR (2004) Continuous culture of photobacterium. Biosens Bioelectron 19:1457–1463CrossRefGoogle Scholar
  53. Roberto FF, Barnes JM, Bruhn DF (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58:181–188CrossRefGoogle Scholar
  54. Ron EZ (2007) Biosensing environmental pollution. Curr Opin Biotech 18:252–256CrossRefGoogle Scholar
  55. Sagi E, Hever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuators B 90:2–8CrossRefGoogle Scholar
  56. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289CrossRefGoogle Scholar
  57. Shin HJ, Park HH, Lim WK (2005) Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J Biotechnol 119:36–43CrossRefGoogle Scholar
  58. Sørensen SJ, Burmølle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotech 17:11–16CrossRefGoogle Scholar
  59. Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971CrossRefGoogle Scholar
  60. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malick KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arenate in potable water. Environ Sci Technol 37:4743–4750CrossRefGoogle Scholar
  61. Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76:6693–6697CrossRefGoogle Scholar
  62. Tecon R, van der Meer JR (2006) Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotech 17:4–10CrossRefGoogle Scholar
  63. Tecon R, Wells M, van der Meer JR (2006) A new green fluorescent protein-based bacterial biosensor for analyzing phenanthrene fluxes. Environ Microbiol 8:697–708CrossRefGoogle Scholar
  64. Thouand G, Horry H, Durand MJ, Picart P, Bendriaa L, Daniel P, DuBow MS (2003) Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain. Appl Microbiol Biotechnol 62:218–225CrossRefGoogle Scholar
  65. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26CrossRefGoogle Scholar
  66. Toba FA, Hay AG (2005) A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Meth 62:135–143CrossRefGoogle Scholar
  67. Trang PT, Berg M, Viet PH, Van Mui N, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630CrossRefGoogle Scholar
  68. van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020CrossRefGoogle Scholar
  69. Van Dyk TK, DeRose EJ, Gonye GE (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 183:5496–5505CrossRefGoogle Scholar
  70. Védrine C, Leclerc JC, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463CrossRefGoogle Scholar
  71. Vollmer AC, Van Dyk TK (2004) Stress responsive bacteria: biosensors as environmental monitors. Adv Microb Physiol 49:131–174CrossRefGoogle Scholar
  72. Wells M, Gösch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Ultrasenstitive reporter protein detection in genetically engineered bacteria. Anal Chem 77:2683–2689CrossRefGoogle Scholar
  73. Werlen C, Jaspers MC, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51CrossRefGoogle Scholar
  74. Xu Z, Mulchandani A, Chen W (2003) Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol Prog 19:1812–1815CrossRefGoogle Scholar
  75. Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258CrossRefGoogle Scholar
  76. Yoshida K, Inoue K, Takahashi Y, Ueda S, Isoda K, Yagi K, Maeda I (2008) Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. App Environ Microbiol 74:6730–6738CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Energy Environmental Engineering Major, Division of Energy BioengineeringDongseo UniversityBusanRepublic of Korea

Personalised recommendations