Advertisement

Applied Microbiology and Biotechnology

, Volume 89, Issue 5, pp 1395–1403 | Cite as

Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil

  • Doumit Camilios-Neto
  • Cryshelen Bugay
  • Arquimedes Paixão de Santana-Filho
  • Talita Joslin
  • Lauro Mera de Souza
  • Guilherme Lanzi Sassaki
  • David Alexander Mitchell
  • Nadia KriegerEmail author
Biotechnological Products and Process Engineering

Abstract

Rhamnolipid biosurfactants are attracting attention due to their low toxicity, high biodegradability, and good ecological acceptability. However, production in submerged culture is made difficult by severe foaming problems. Solid-state cultivation (SSC) is a promising alternative production method. In the current work, we report the optimization of rhamnolipid production by Pseudomonas aeruginosa UFPEDA 614 on a solid substrate containing sugarcane bagasse and corn bran. The best rhamnolipid production, 45 g/l of impregnating solution used, was obtained with a 50:50 (m/m) mixture of sugarcane bagasse and corn bran supplemented with an impregnating solution containing 6% (v/v) of each of glycerol and soybean oil. This level is comparable with those of previous studies undertaken in solid-state cultivation; the composition of the biosurfactant is similar, but our medium is cheaper. Our work therefore provides a suitable basis for future studies of the development of an SSC-based process for rhamnolipid production.

Keywords

Rhamnolipids Biosurfactants Solid-state cultivation Solid-state fermentation Pseudomonas aeruginosa 

Notes

Acknowledgements

This work was supported financially by Corn Products Brasil and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), a Brazilian government agency for the advancement of science and technology. Research scholarships were granted to David Mitchell, Nadia Krieger, Arquimedes Paixão de Santana-Filho, Guilherme L. Sassaki, and Lauro M. de Souza by CNPq, to Doumit Camilios-Neto by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), and to Cryshelen Bugay and Talita Joslin by Corn Products Brasil.

References

  1. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508CrossRefGoogle Scholar
  2. Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288CrossRefGoogle Scholar
  3. Bonilla M, Olivaro C, Corona M, Vazquez M, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463CrossRefGoogle Scholar
  4. Bordas F, Lafrance P, Villemur R (2005) Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids. Environ Pollut 138:69–76CrossRefGoogle Scholar
  5. Camilios Neto D, Meira JA, Araújo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81:441–448CrossRefGoogle Scholar
  6. Camilios Neto D, Meira JA, Tiburtius E, Zamora PP, Bugay C, Mitchell DA, Krieger N (2009) Production of rhamnolipids in solid-state cultivation: characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnol J 4:748–755CrossRefGoogle Scholar
  7. Costa SGVAO, Nitschke M, Haddad R, Eberlin M, Contiero J (2006) Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem 41:483–488CrossRefGoogle Scholar
  8. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  9. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 4:397–409CrossRefGoogle Scholar
  10. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  11. Itoh S, Honda H, Tomota F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 24:855–859Google Scholar
  12. Kim SK, Yoon BD, Lee CH, Suh HH, Oh HM, Katsuragi T, Tani Y (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46CrossRefGoogle Scholar
  13. Lee BS, Kim EK (2004) Lipopeptide production from Bacillus sp. GB16 using a novel oxygenation method. Enz Microb Technol 35:639–647CrossRefGoogle Scholar
  14. Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  15. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  16. Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220CrossRefGoogle Scholar
  17. Monteiro SA, Sassaki GL, Souza LM, Meira JA, Araújo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13CrossRefGoogle Scholar
  18. Mulligan CN (2005) Environmental application for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  19. Mulligan CN, Gibbs BF (1993) Factors influencing the economics of biosurfactants. In: Kosaric N (ed) Biosurfactants. Marcel Dekker, New York, pp 329–371Google Scholar
  20. Sim L, Ward OP, Li Z-Y (1997) Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238CrossRefGoogle Scholar
  21. Souza LM, Cipriani TR, Serrato RV, Costa DE, Iacomini M, Gorin PAJ, Sassaki GL (2008) Analysis of flavonol glycoside isomers from leaves of Maytenus ilicifolia by offline and online high performance liquid chromatography–electrospray mass spectrometry. J Chromatogr A 1207:101–109CrossRefGoogle Scholar
  22. Souza LM, Cipriani TR, Sant’Ana CF, Iacomini M, Gorin PAJ, Sassaki GL (2009) Heart-cutting two-dimensional (size exclusion × reversed phase) liquid chromatography–mass spectrometry analysis of flavonol glycosides from leaves of Maytenus ilicifolia. J Chromatogr A 1216:99–105CrossRefGoogle Scholar
  23. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571CrossRefGoogle Scholar
  24. Veenanadig NK, Gowthaman MK, Karanth NGK (2000) Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Eng 22:95–99CrossRefGoogle Scholar
  25. Yeh MS, Wei TH, Chang JS (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Doumit Camilios-Neto
    • 1
  • Cryshelen Bugay
    • 2
  • Arquimedes Paixão de Santana-Filho
    • 1
  • Talita Joslin
    • 2
  • Lauro Mera de Souza
    • 1
  • Guilherme Lanzi Sassaki
    • 1
  • David Alexander Mitchell
    • 1
  • Nadia Krieger
    • 2
    Email author
  1. 1.Departamento de Bioquímica e Biologia MolecularUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations