Advertisement

Applied Microbiology and Biotechnology

, Volume 89, Issue 6, pp 1929–1938 | Cite as

A novel l-isoleucine metabolism in Bacillus thuringiensis generating (2S,3R,4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid

  • Jun Ogawa
  • Tomohiro Kodera
  • Sergey V. Smirnov
  • Makoto Hibi
  • Natalia N. Samsonova
  • Ryoukichi Koyama
  • Hiroyuki Yamanaka
  • Junichi Mano
  • Takashi Kawashima
  • Kenzo Yokozeki
  • Sakayu Shimizu
Applied Microbial and Cell Physiology

Abstract

4-Hydroxyisoleucine (HIL) found in fenugreek seeds has insulinotropic and anti-obesity effects and is expected to be a novel orally active drug for insulin-independent diabetes. Here, we show that the newly isolated strain Bacillus thuringiensis 2e2 and the closely related strain B. thuringiensis ATCC 35646 operate a novel metabolic pathway for l-isoleucine (l-Ile) via HIL and 2-amino-3-methyl-4-ketopentanoic acid (AMKP). The HIL synthesis was catalyzed stereoselectively by an α-ketoglutaric acid-dependent dioxygenase and to be useful for efficient production of a naturally occurring HIL isomer, (2S,3R,4S)-HIL. The (2S,3R,4S)-HIL was oxidized to (2S,3R)-AMKP by a NAD+-dependent dehydrogenase. The metabolic pathway functions as an effective bypass pathway that compensates for the incomplete tricarboxylic acid (TCA) cycle in Bacillus species and also explains how AMKP, a vitamin B12 antimetabolite with antibiotic activity, is synthesized. These novel findings pave a new way for the commercial production of HIL and also for AMKP.

Keywords

l-Isoleucine dioxygenase 4-Hydroxyisoleucine NAD+-dependent dehydrogenase 2-Amino-3-methyl-4-ketopentanoic acid Bacillus thuringiensis TCA cycle 

Notes

Acknowledgments

This work was partially supported by the Project for Development of a Technological Infrastructure for Industrial Bioprocesses on R&D of New Industrial Science and Technology Frontiers (to S. Shimizu and J. Ogawa) from the New Energy and Industrial Technology Development Organization (NEDO) of Japan, Grants-in-Aid for Scientific Research (no. 21780070 to M. Hibi), and COE for Microbial-Process Development Pioneering Future Production Systems (to S. Shimizu) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Res. Div. Microb. Sci. (J. Ogawa) is an endowed laboratory of the Institute for Fermentation, Osaka (IFO).

References

  1. Alcock N, Crout D, Gregorio M, Lee E, Pike G, Samuel C (1989) Stereochemistry of the 4-hydroxyisoleucine from Trigonella foenum-graecum. Phytochemistry 28:1835–1841CrossRefGoogle Scholar
  2. Al-Habori M, Raman A (1998) Antidiabetic and hypocholesterolaemic effects of fenugreek. Phytother Res 12:233–242CrossRefGoogle Scholar
  3. Aronson J, Borris D, Doerner J, Akers E (1975) γ-Aminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl Microbiol 30:489–492Google Scholar
  4. Broca C, Gross R, Petit P, Sauvaire Y, Manteghetti M, Tournier M, Masiello P, Gomis R, Ribes G (1999) 4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties. Am J Physiol Endocrinol Metab 277:40–44Google Scholar
  5. Broca C, Manteghetti M, Gross R, Baissac Y, Jacob M, Petit P, Sauvaire Y, Ribes G (2000) 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. Eur J Pharmacol 390:339–345CrossRefGoogle Scholar
  6. Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19CrossRefGoogle Scholar
  7. Fowden L, Pratt HM, Smith A (1973) 4-Hydroxyisoleucine from seed of Trigonella foenum-graecum. Phytochemistry 12:1707–1711CrossRefGoogle Scholar
  8. Haefele C, Bonfils C, Sauvaire Y (1997) Characterization of a dioxygenase from Trigonella foenum-graecum involved in 4-hydroxyisoleucine biosynthesis. Phytochemistry 44:563–566CrossRefGoogle Scholar
  9. Handa T, Yamaguchi K, Sono Y, Yazawa K (2005) Effects of fenugreek seed extract in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 69:1186–1188CrossRefGoogle Scholar
  10. Hausinger RP (2004) Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39:21–68CrossRefGoogle Scholar
  11. Holsch K, Havel J, Haslbeck M, Weuster-Botz D (2008) Identification, cloning, and characterization of a novel ketoreductase from the cyanobacterium Synechococcus sp. strain PCC 7942. Appl Environ Microbiol 74:6697–6702CrossRefGoogle Scholar
  12. Inghardt T, Frejd T, Svensson G (1991) Organoaluminium induced ring-opening of epoxypyranosides. IV. Synthesis and structure of γ-hydroxy-lsoleucine stereoisomers and their corresponding lactones. Tetrahedron 47:6469–6482CrossRefGoogle Scholar
  13. Kodera T, Smirnov SV, Samsonova NN, Kozlov YI, Koyama R, Hibi M, Ogawa J, Yokozeki K, Shimizu S (2009) A novel l-isoleucine hydroxylating enzyme, l-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-4-hydroxyisoleucine. Biochem Biophys Res Commun 390:506–510CrossRefGoogle Scholar
  14. Mori H, Shibasaki T, Yano K, Ozaki A (1997) Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylates free L-proline to cis-3-hydroxy-L-proline. J Bacteriol 179:5677–5683Google Scholar
  15. Ogawa J, Yamanaka H, Mano J, Doi Y, Horinouchi N, Kodera T, Nio N, Smirnov SV, Samsonova NN, Kozlov YI, Shimizu S (2007) Synthesis of 4-hydroxyisoleucine by the aldolase-transaminase coupling reaction and basic characterization of the aldolase from Arthrobacter simplex AKU 626. Biosci Biotechnol Biochem 71:1607–1615CrossRefGoogle Scholar
  16. Perlman D, Perlman KL, Bodanszky M (1977) Microbial production of vitamin B12 antimetabolites. II. 2-Amino-4-keto-3-methylpentanoic acids from Bacillus cereus 439. Bioorg Chem 6:263–271CrossRefGoogle Scholar
  17. Rolland-Fulcrand V, Rolland M, Roumestant ML, Martinez J (2004) Chemoenzymatic synthesis of enantiomerically pure (2S, 3R, 4S)-4-hydroxyisoleucine, an insulinotropic amino acid isolated from fenugreek seeds. Eur J Org Chem 2004(3):873–877CrossRefGoogle Scholar
  18. Shibasaki T, Mori H, Chiba S, Ozaki A (1999) Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol 65:4028–4031Google Scholar
  19. Smirnov SV, Samsonova NN, Novikova AE, Matrosov NG, Rushkevich NY, Kodera T, Ogawa J, Yamanaka H, Shimizu S (2007) A novel strategy for enzymatic synthesis of 4-hydroxyisoleucine: identification of an enzyme possessing HMKP (4-hydroxy-3-methyl-2-keto-pentanoate) aldolase activity. FEMS Microbiol Lett 273:70–77CrossRefGoogle Scholar
  20. Strieker M, Kopp F, Mahlert C, Essen LO, Marahiel MA (2007) Mechanistic and structural basis of stereospecific Cβ-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem Biol 2:187–196CrossRefGoogle Scholar
  21. Wang Q, Ouazzani J, Andre-Sasaki N, Potier P (2002) A practical synthesis of (2S, 3R, 4S)-4-hydroxyisoleucine, a potent insulinotropic a-amino acid from fenugreek. Eur J Org Chem 5:834–839CrossRefGoogle Scholar
  22. Yamamoto H, Matsuyama A, Kobayashi Y (2003) Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues. Appl Microbiol Biotechnol 61:133–139Google Scholar
  23. Yin X, Zabriskie T (2004) VioC is a non-heme iron, α-ketoglutarate-dependent oxygenase that catalyzes the formation of 3S-hydroxy-L-arginine during viomycin biosynthesis. Chembiochem 5:1274–1277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jun Ogawa
    • 1
    • 5
  • Tomohiro Kodera
    • 2
  • Sergey V. Smirnov
    • 3
  • Makoto Hibi
    • 4
  • Natalia N. Samsonova
    • 3
  • Ryoukichi Koyama
    • 1
  • Hiroyuki Yamanaka
    • 1
  • Junichi Mano
    • 1
  • Takashi Kawashima
    • 1
  • Kenzo Yokozeki
    • 4
    • 6
  • Sakayu Shimizu
    • 1
  1. 1.Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Institute of Life SciencesAjinomoto Co., IncKawasakiJapan
  3. 3.Ajinomoto-Genetika Research InstituteMoscowRussia
  4. 4.Laboratory of Industrial Microbiology, Graduate School of AgricultureKyoto UniversityKyotoJapan
  5. 5.Research Division of Microbial SciencesKyoto UniversityKyotoJapan
  6. 6.Aminoscience LaboratoriesAjinomoto Co., IncKawasakiJapan

Personalised recommendations