Applied Microbiology and Biotechnology

, Volume 89, Issue 6, pp 2039–2052

Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles

  • Ayrat M. Ziganshin
  • Thomas Schmidt
  • Frank Scholwin
  • Olga N. Il’inskaya
  • Hauke Harms
  • Sabine Kleinsteuber
Environmental Biotechnology

Abstract

Cereal distillers grains, a by-product from bioethanol industry, proved to be a suitable feedstock for biogas production in laboratory scale anaerobic digesters. Five continuously stirred tank reactors were run under constant conditions and monitored for biogas production and composition along with other process parameters. Iron additives for sulfide precipitation significantly improved the process stability and efficiency, whereas aerobic pretreatment of the grains had no effect. The microbial communities in the reactors were investigated for their phylogenetic composition by terminal restriction fragment length polymorphism analysis and sequencing of 16S rRNA genes. The bacterial subcommunities were highly diverse, and their composition did not show any correlation with reactor performance. The dominant phylotypes were affiliated to the Bacteroidetes. The archaeal subcommunities were less diverse and correlated with the reactor performance. The well-performing reactors operated at lower organic loading rates and amended with iron chloride were dominated by aceticlastic methanogens of the genus Methanosaeta. The well-performing reactor operated at a high organic loading rate and supplemented with iron hydroxide was dominated by Methanosarcina ssp. The reactor without iron additives was characterized by propionate and acetate accumulation and high hydrogen sulfide content and was dominated by hydrogenotrophic methanogens of the genus Methanoculleus.

Keywords

Biogas DDGS T-RFLP Methanogenic archaea Porphyromonadaceae Actinomycetales 

Supplementary material

253_2010_2981_MOESM1_ESM.doc (308 kb)
Table S1Sequencing results of representative bacterial 16S rDNA gene clones and experimentally determined terminal restriction fragments (T-RF) (DOC 308 kb)
253_2010_2981_MOESM2_ESM.doc (200 kb)
Table S2Sequencing results of representative archaeal 16S rDNA gene clones and experimentally determined terminal restriction fragments (T-RF) (DOC 200 kb)

References

  1. Abdo Z, Schuette UM, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938CrossRefGoogle Scholar
  2. Ahn HK, Smith MC, Kondrad SL, White JW (2009) Evaluation of biogas production potential by dry anaerobic digestion of switchgrass–animal manure mixtures. Appl Biochem Biotechnol 160:965–975CrossRefGoogle Scholar
  3. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723CrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  5. An D, Cai S, Dong X (2006) Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 56:2043–2048CrossRefGoogle Scholar
  6. Angelidaki I, Ahring BK, Deng H, Schmidt JE (2002) Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors. Water Sci Technol 45:213–218Google Scholar
  7. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35CrossRefGoogle Scholar
  8. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568CrossRefGoogle Scholar
  9. Bae HS, Moe WM, Yan J, Tiago I, da Costa MS, Rainey FA (2006) Brooklawnia cerclae gen. nov., sp. nov., a propionate-forming bacterium isolated from chlorosolvent-contaminated groundwater. Int J Syst Evol Microbiol 56:1977–1983CrossRefGoogle Scholar
  10. Bagi Z, Ács N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G, Kovács KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482CrossRefGoogle Scholar
  11. Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25CrossRefGoogle Scholar
  12. Chen S, Dong X (2005) Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261CrossRefGoogle Scholar
  13. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  14. Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115CrossRefGoogle Scholar
  15. Cirne DG, Lehtomaki A, Bjornsson L, Blackall LL (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103:516–527CrossRefGoogle Scholar
  16. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190CrossRefGoogle Scholar
  17. Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste—linking process to microbial communities. FEMS Microbiol Ecol 74:226–240CrossRefGoogle Scholar
  18. Franke-Whittle IH, Goberna M, Pfister V, Insam H (2009) Design and development of the ANAEROCHIP microarray for invesigation of methanogenic communities. J Microbiol Methods 79:279–288CrossRefGoogle Scholar
  19. Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, HobokenCrossRefGoogle Scholar
  20. Goberna M, Insam H, Franke-Whittle IH (2009) Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 75:2566–2572CrossRefGoogle Scholar
  21. Goberna M, Gadermaier M, García C, Wett B, Insam H (2010) Adaptation of methanogenic communities to the cofermentation of cattle excreta and olive mill wastes at 37°C and 55°C. Appl Environ Microbiol 76:6564–6571CrossRefGoogle Scholar
  22. Godon JJ, Morinière J, Moletta M, Gaillac M, Bru V, Delgènes JP (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224CrossRefGoogle Scholar
  23. Grabowski A, Tindall BJ, Bardin V, Blanchet D, Jeanthon C (2005) Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol 55:1113–1121CrossRefGoogle Scholar
  24. Holmes DE, Nevin KP, Woodard TL, Peacock AD, Lovley DR (2007) Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 57:701–707CrossRefGoogle Scholar
  25. Hugenholtz P, Hooper SD, Kyrpides NC (2009) Focus: Synergistetes. Environ Microbiol 11:1327–1329CrossRefGoogle Scholar
  26. Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu Y-L, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H (2006) Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72:2080–2091CrossRefGoogle Scholar
  27. Jumas-Bilak E, Roudiere L, Marchandin H (2009) Description of ‘Synergistetes' phyl. nov. and emended description of the phylum 'Deferribacteres' and of the family Syntrophomonadaceae, phylum 'Firmicutes'. Int J Syst Evol Microbiol 59:1028–1035CrossRefGoogle Scholar
  28. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338CrossRefGoogle Scholar
  29. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141CrossRefGoogle Scholar
  30. Kendall MM, Boone DR (2006) The order Methanosarcinales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes—a handbook on the biology of bacteria, 3rd edn. Springer, New York, pp 244–256Google Scholar
  31. Kleinsteuber S, Riis V, Fetzer I, Harms H, Muller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542CrossRefGoogle Scholar
  32. Klocke M, Mahnert P, Mundt K, Souidi K, Linke B (2007) Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 30:139–151CrossRefGoogle Scholar
  33. Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B (2008) Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205CrossRefGoogle Scholar
  34. Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass—thermophilic temperature governs population dynamics of methanogens. Appl Environ Microbiol 76:1842–1850CrossRefGoogle Scholar
  35. Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101CrossRefGoogle Scholar
  36. Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49CrossRefGoogle Scholar
  37. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 177–203Google Scholar
  38. Lee C, Kim J, Hwang K, O'Flaherty V, Hwang S (2009) Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Res 43:157–165CrossRefGoogle Scholar
  39. Li T, Mazéas L, Sghir A, Leblon G, Bouchez T (2009) Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904CrossRefGoogle Scholar
  40. Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, Zhao GP, Zhou ZH (2009) The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 106:952–966CrossRefGoogle Scholar
  41. Lomans BP, Maas R, Luderer R, Op den Camp HJM, Pol A, van der Drift C, Vogels GD (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65:3641–3650Google Scholar
  42. Lomans BP, van der Drift C, Pol A, Op den Camp HJ (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 59:575–588CrossRefGoogle Scholar
  43. Lübken M, Gehring T, Wichern M (2007) Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl Microbiol Biotechnol 85:1643–1652CrossRefGoogle Scholar
  44. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Research 32:1363–1371CrossRefGoogle Scholar
  45. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  46. McKendry P (2002) Energy production from biomass (Part 1): overview of biomass. Bioresour Technol 83:37–46CrossRefGoogle Scholar
  47. Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18:273–278CrossRefGoogle Scholar
  48. Nettmann E, Bergmann I, Mundt K, Linke B, Klocke M (2008) Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. J Appl Microbiol 105:1835–1850CrossRefGoogle Scholar
  49. Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76:2540–2548CrossRefGoogle Scholar
  50. O'Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioengin 92:871–878CrossRefGoogle Scholar
  51. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196CrossRefGoogle Scholar
  52. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714CrossRefGoogle Scholar
  53. Sawyer CN, McCarty PL, Parkin GF (1994) Chemistry for Environmental Engineering, 4th ed., McGraw-Hill, New YorkGoogle Scholar
  54. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280Google Scholar
  55. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649CrossRefGoogle Scholar
  56. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  57. Talbot G, Topp E, Palin MF, Masse DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537CrossRefGoogle Scholar
  58. Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44CrossRefGoogle Scholar
  59. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13:99–106CrossRefGoogle Scholar
  60. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  61. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860CrossRefGoogle Scholar
  62. Weiss A, Jérôme V, Burghardt D, Likke L, Peiffer S, Hofstetter EM, Gabler R, Freitag R (2009) Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant. Appl Microbiol Biotechnol 84:987–1001CrossRefGoogle Scholar
  63. Widdel F, Hansen TA (1992) The dissimilatory sulfate- and sulfur-reducing bacteria, 2nd edn. Springer, New YorkGoogle Scholar
  64. WPCF (1987) Anaerobic sludge digestion. Manual of Practice No.19, 2nd edn. Water Pollution Control Federation, Alexandria, VA.Google Scholar
  65. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MWW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75:4762–4769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ayrat M. Ziganshin
    • 1
  • Thomas Schmidt
    • 2
  • Frank Scholwin
    • 2
  • Olga N. Il’inskaya
    • 1
  • Hauke Harms
    • 3
  • Sabine Kleinsteuber
    • 3
  1. 1.Department of MicrobiologyKazan (Volga Region) Federal UniversityKazanRussian Federation
  2. 2.Department of Biochemical ConversionGerman Biomass Research CentreLeipzigGermany
  3. 3.Department of Environmental MicrobiologyUFZ—Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations