Applied Microbiology and Biotechnology

, Volume 89, Issue 3, pp 457–473 | Cite as

Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria

  • Sheng Qin
  • Ke Xing
  • Ji-Hong Jiang
  • Li-Hua Xu
  • Wen-Jun Li


Endophytic actinobacteria, which exist in the inner tissues of living plants, have attracted increasing attention among taxonomists, ecologists, agronomists, chemists and evolutionary biologists. Numerous studies have indicated that these prolific actinobacteria appear to have a capacity to produce an impressive array of secondary metabolites exhibiting a wide variety of biological activity, such as antibiotics, antitumor and anti-infection agents, plant growth promoters and enzymes, and may contribute to their host plants by promoting growth and enhancing their ability of withstanding the environmental stresses. These microorganisms may represent an underexplored reservoir of novel species of potential interest in the discovery of novel lead compounds and for exploitation in pharmaceutical, agriculture and industry. This review focuses on new findings in the isolation methods, bio- and chemical diversity of endophytic actinobacteria and reveals the potential biotechnological application. The facing problems and strategies for biodiversity research and bioactive natural products producing are also discussed.


Endophytic actinobacteria Biodiversity Natural products Biotechnology 



This work was partially supported by the National Basic Research Program of China (No. 2010CB833800), National Natural Science Foundation of China (Project no. 30872028, 31000005), the Major Fundamental Research Program of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (08KJA350001), the Program of the Demonstration and Study of Standardization Seeding Technology of Jatropha (2007BAD50B0204) and Grants from Natural Science Foundation by Xuzhou Normal University (09XLR12, 09XLR19).


  1. Araujo WL, Marcon J, WJr M, Van Elsas JD, JWVan V, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914Google Scholar
  2. Ayuso-Sacido A, Genilloud O (2004) New PCR primers for the screening of NRPS and PKS-I system in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24Google Scholar
  3. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563Google Scholar
  4. Bascom-Slack CA, Ma C, Moore E, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJ, Li P, Light DY, Lin EH, Schorn MA, Vekhter D, Boulanger LA, Hess WM, Vargas PN, Strobel GA, Strobel SA (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol 58(2):374–383Google Scholar
  5. Benson DR, Silvester WB (1993) Biology of Frankia strain, actinomycetes symbionts of actinorrhizal plants. Microbiol Rev 57:293–319Google Scholar
  6. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26Google Scholar
  7. Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco PA (2009) Endophytic bacterial diversity in Grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J Microbiol 47:393–401Google Scholar
  8. Cao LX, Qiu ZQ, You JL, Tan HM, Zhou SN (2004) Isolation and characterization of endophytic Streptomyces strains from surfacesterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430Google Scholar
  9. Cao LX, Qiu ZQ, You JL, Tan HM, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152Google Scholar
  10. Caruso M, Colombo AL, Crespi-Perellino N, Fedeli L, Malyszko J, Pavesi A, Quaroni S, Saracchi M, Ventrella G (2000) Studies on a strain of Kitasatospora sp. paclitaxel producer. Ann Microbiol 50:89–102Google Scholar
  11. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685Google Scholar
  12. Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Miller D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 234:183–190Google Scholar
  13. Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M, Robison R, Porter H, Jensen J (2006) Munumbicins E-4 and E-5: novel broad-spectrumantibiotics from Streptomyces NRRL3052. FEMS Microbiol Lett 255:296–300Google Scholar
  14. Chen HH, Qin S, Lee JC, Kim CJ, Xu LH, Jiang CL, Li WJ (2009a) Streptomyces mayteni sp. nov., a novel endophytic actinomycete isolated from Chinese medicinal plant. Antonie Leeuwenhoek 95:47–53Google Scholar
  15. Chen HH, Qin S, Li J, Zhang YQ, Xu LH, Jiang CL, Kim CJ, Li WJ (2009b) Pseudonocardia endophytica sp. nov., isolated from a pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 59:559–593Google Scholar
  16. Chen HH, Zhao GZ, Park DJ, Zhang YQ, Lee JC, Kim CJ, Xu LH, Li WJ (2009c) Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol 59:1070–1075Google Scholar
  17. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959Google Scholar
  18. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678Google Scholar
  19. Conn VM, Franco CMM (2004) Analysis of the endophytec actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794Google Scholar
  20. Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–218Google Scholar
  21. Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria isolated from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608Google Scholar
  22. Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366Google Scholar
  23. Davis KE, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834Google Scholar
  24. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16Google Scholar
  25. Doumbou CL, Akimov V, Beaulieu C (1998) Selection and characterization of microorganisms utilizing Thaxtomin A, a phytotoxin produced by Streptomyces scabies. Appl Environ Microbiol 64:4313–4316Google Scholar
  26. Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y (2009) Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 59:1487–1491Google Scholar
  27. El-Gendy MMA, EL-Bondkly AMA (2010) Production and genetic improvement of a novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi from endophytic Streptomyces sp. Hedaya48. J Ind Microbiol Biotechnol 37(8):831–841Google Scholar
  28. El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Aust J Bot 51:257–266Google Scholar
  29. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520Google Scholar
  30. El-Tarabily KA, Nassar AH, GEStJ H, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26Google Scholar
  31. Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793Google Scholar
  32. Fialho de Oliveira M, Germano da Silva M, Van Der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Res Microbiol 161:565–572Google Scholar
  33. Garcia LC, Martinez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337Google Scholar
  34. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242Google Scholar
  35. Goodfellow M, Fiedler HP (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Leeuwenhoek 98(2):119–142Google Scholar
  36. Gu Q, Luo HL, Zheng W, Liu ZH, Huang Y (2006) Pseudonocardia oroxyli sp. nov., isolated from Oroxylum indicum root. Int J Syst Evol Microbiol 56:2193–2197Google Scholar
  37. Gu Q, Zheng W, Huang Y (2007) Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata Wall. Int J Syst Evol Microbiol 57:1995–1998Google Scholar
  38. Guan S, Suttler I, Lin W, Guo D, Grabley S (2005) p-Aminoacetophenonic acids produced by a mangrove endophyte: Streptomyces griseus subsp. J Nat Prod 68:1198–1200Google Scholar
  39. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526Google Scholar
  40. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:153–158Google Scholar
  41. Hallmann J, Kloepper JW, Rodríguez-Kábana R (1997a) Application of the scholander pressure bomb to studies on endophytic bacteria of plants. Can J Microbiol 43:411–416Google Scholar
  42. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997b) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914Google Scholar
  43. Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, New York, pp 299–314Google Scholar
  44. Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81Google Scholar
  45. Hayakawa M (1990) Selective isolation methods and distribution of soil actinomycetes. Actinomycetologica 4:103–112Google Scholar
  46. Higashide E, Asai M, OotsuK TS, Kozay Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) Ansamitocins, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature 270:721–722Google Scholar
  47. Hirsch AM, Valdés M (2010) Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem 42:536–542Google Scholar
  48. Hornung A, Bertazzo M, Dziarnowski A, Schneider K, Welzel K, Wohlert SE, Holzenkämpfer M, Nicholson GJ, Bechthold A, Süssmuth RD, Vente A, Pelzer S (2007) A genomic screening approach to the structure-guided identification of drug candidates from natural sources. Chembiochem 8:757–766Google Scholar
  49. Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica 18:63–66Google Scholar
  50. Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764–767Google Scholar
  51. Igarashi Y, Miura S, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot 59:193–195Google Scholar
  52. Igarashi Y, Trujillo ME, Martínez-Molina E, Miyanaga S, Obata T, Sakurai H, Saiki I, Fujita T, Furumai T (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702–3705Google Scholar
  53. Ikeda S, Kaneko T, Okubo T, Rallos LEE, Eda S, Mitsui H, Sato S, Nakamura Y, Tabata S, Minamisawa K (2009) Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol 58:703–714Google Scholar
  54. Ikeda S, Okubo T, Kaneko T, Inaba S, Maekawa T, Eda S, Sato S, Tabata S, Mitsui H, Minamisawa K (2010) Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. ISME J 4:315–326Google Scholar
  55. Inahashi Y, Matsumoto A, Danbara H, Ōmura S, Takahashi Y (2009) Phytohabitans suffuscus gen. nov., sp. nov., a novel actinomycete of the family Micromonosporaceae isolated from a plant root. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.016477-0 Google Scholar
  56. Indananda C, Matsumoto A, Inahashi Y, Takahashi Y, Duangmal K, Thamchaipenet A (2010a) Actinophytocola gen. nov., a new genus of the family Pseudonocardiaceae and description of a new species, Actinophytocola oryzae sp. nov., isolated from root of Thai glutinous rice plant. Int J Syst Evol Microbiol 60:1141–1146Google Scholar
  57. Indananda C, Thamchaipenet A, Matsumoto A, Duangmal K, Takahashi Y (2010b) Actinoallomurus oryzae sp. nov., an endophytic actinomycete isolated from root of Thai jasmine rice plant. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.022509-0 Google Scholar
  58. Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386Google Scholar
  59. Jiao JY, Wang HX, Zeng Y, Shen YM (2006) Enrichment for microbes living in association with plant tissues. J Appl Microbiol 100:830–837Google Scholar
  60. Kaewkla O, Franco CMM (2010a) Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 60:1532–1536Google Scholar
  61. Kaewkla O, Franco CMM (2010b) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a Grey Box tree. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.019208-0 Google Scholar
  62. Kaewkla O, Franco CMM (2010c) Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from the surface-sterilized root of a native Australian eucalyptus tree. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.022327-0 Google Scholar
  63. Kannan V, Sureendar R (2008) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164Google Scholar
  64. Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong YS, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot 59:797–800Google Scholar
  65. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1384–1390Google Scholar
  66. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786Google Scholar
  67. Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF (1972) Maytansine, a novel antileukaemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94:1355–1356Google Scholar
  68. Küster E, Williams ST (1964) Media for the isolation of streptomycetes: starch casein medium. Nature 202:928–929Google Scholar
  69. Lauber CL, Zhou N, Gordon JI, Knight R, Fierer N (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol Lett 307(1):80–86Google Scholar
  70. Lee SO, Choi GJ, Choi YH, Jang KS, Park DJ, Kim CJ, Kim JC (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746Google Scholar
  71. Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63:468–476Google Scholar
  72. Li J, Zhao GZ, Chen HH, Qin S, Xu LH, Jiang CL, Li WJ (2008a) Rhodococcus cercidiphylli sp. nov., a new endophytic actinobacterium isolated from leaf of Cercidiphyllum japonicum. Syst Appl Microbiol 31:1108–1113Google Scholar
  73. Li J, Zhao GZ, Zhang YQ, Klenk HP, Pukall R, Qin S, Xu LH, Li WJ (2008b) Dietzia schimae sp. nov. and Dietzia cercidiphylli sp. nov., from surface-sterilized plant tissues. Int J Syst Evol Microbiol 58:2549–2554Google Scholar
  74. Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Li WJ (2009a) Kineosporia mesophila sp. nov., isolated from the surface-sterilized stem of Tripterygium wilfordii. Int J Syst Evol Microbiol 59:3150–3154Google Scholar
  75. Li J, Zhao GZ, Qin S, Huang HY, Zhu WY, Xu LH, Li WJ (2009b) Saccharopolyspora tripterygii sp. nov., an endophytic actinomycete isolated from the stem of Tripterygium hypoglaucum. Int J Syst Evol Microbiol 59:3040–3044Google Scholar
  76. Li J, Zhao GZ, Qin S, Zhu WY, Xu LH, Li WJ (2009c) Herbidospora osyridis sp. nov., isolated from tissue of Osyris wightiana Wall. Int J Syst Evol Microbiol 59:3123–3127Google Scholar
  77. Li J, Zhao GZ, Qin S, Zhu WY, Xu LH, Li WJ (2009d) Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp. Int J Syst Evol Microbiol 59:1492–1496Google Scholar
  78. Li J, Lu CH, Shen YM (2010a) Macrolides of the bafilomycin family produced by Streptomyces sp. CS. J Antibiot. doi: 10.1038/ja.2010.95 Google Scholar
  79. Li J, Zhao GZ, Huang HY, Zhu WY, Lee JC, Xu LH, Kim CJ, Li WJ (2010b) Nonomuraea endophytica sp. nov., an endophytic actinomycete isolated from Artemisia annua L. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.022558-0 Google Scholar
  80. Lin ZJ, Lu XM, Zhu TJ, Fang YC, Gu QQ, Zhu WM (2008) GPR12 Selections of the metabolites from an endophytic Streptomyces sp. asociated with Cistanches deserticola. Arch Pharm Res 31:1108–1114Google Scholar
  81. Liu N, Wang HB, Liu M, Gu Q, Zheng W, Huang Y (2009) Streptomyces alni sp. nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 59:254–258Google Scholar
  82. Lu CH, Shen YM (2003) A new macrolide antibiotics with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J Antibiot 56:415–418Google Scholar
  83. Lu CH, Shen YM (2004) Two new macrolides produced by Streptomyces sp. CS. J Antibiot 57:597–600Google Scholar
  84. Lu CH, Shen YM (2007) A novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot 60:649–653Google Scholar
  85. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166Google Scholar
  86. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402Google Scholar
  87. Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:44–50Google Scholar
  88. Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572Google Scholar
  89. Moore BS, Kalaitzis JA, Xiang L (2005) Exploiting marine actinomycete biosynthetic pathways for drug discovery. Antonie Leeuwenhoek 87:49–57Google Scholar
  90. Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215Google Scholar
  91. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477Google Scholar
  92. Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 26:193–203Google Scholar
  93. Okazaki T (2003) Studies on actinomycetes isolated from plant leaves. In: Kurtböke DI (ed) Selective isolation of rare actinomycetes. Queensland Complete Printing Service, Australia, pp 102–121Google Scholar
  94. Powel RG, Weisleder D, Smith CR, Kozlowski J, Rohwedder WK (1982) Treflorine, trenudine, and Nmethyltrenudone: novel maytansinoids tumour inhibitors containing two fused macrocyclic rings. J Am Chem Soc 104:4929–4934Google Scholar
  95. Pullen C, Schmitz P, Meurer K, Bamberg DD, Lohmann S, Franc SDC, Groth I, Schlegel B, Möllmann U, Gollmick F, Gräfe U, Leistner E (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162–167Google Scholar
  96. Qin S, Li J, Zhao GZ, Chen HH, Xu LH, Li WJ (2008a) Scharopolyspora endophytica sp. nov., an endophytic actinomycete isolated from the root of Maytenus austroyunnanensis. Syst Appl Microbiol 31:352–357Google Scholar
  97. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL, Xu LH, Li WJ (2008b) Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528Google Scholar
  98. Qin S, Chen HH, Klenk HP, Zhao GZ, Li J, Xu LH, Li WJ (2009a) Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from two medicinal plants in China. Int J Syst Evol Microbiol 59:1023–1027Google Scholar
  99. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009b) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186Google Scholar
  100. Qin S, Li J, Zhang YQ, Zhu WY, Zhao GZ, Xu LH, Li WJ (2009c) Plantactinospora mayteni gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 59:2527–2533Google Scholar
  101. Qin S, Zhao GZ, Klenk HP, Li J, Xu LH, Li WJ (2009d) Nonomuraea antimicrobica sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2453–2457Google Scholar
  102. Qin S, Zhao GZ, Li J, Zhu WY, Xu LH, Li WJ (2009e) Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2453–2457Google Scholar
  103. Qin S, Zhao GZ, Li J, Zhu WY, Xu LH, Li WJ (2009f) Jiangella alba sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2162–2165Google Scholar
  104. Qin S, Zhu WY, Jiang JH, Klenk HP, Li J, Zhao GZ, Xu LH, Li WJ (2009g) Pseudonocardia tropica sp. nov., a novel endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.020099-0 Google Scholar
  105. Qin S, Chen HH, Lee JC, Kim CJ, Xu LH, Li WJ (2010a) Sccharopolyspora gloriosa sp. nov., a novel endophytic actinomycete isolated from the stem of Gloriosa superba L. Int J Syst Evol Microbiol 60:1147–1151Google Scholar
  106. Qin S, Xing K, Fei SM, Lin Q, Chen XM, Cao CL, Sun Y, Wang Y, Li WJ, Jiang JH (2010b) Pseudonocardia sichuanensis sp. nov., a novel endophytic actinomycete isolated from the root of Jatropha curcas L. Antonie Leeuwenhoek. doi: 10.1007/s10482-010-9504-7 Google Scholar
  107. Qiu FB, Huang Y, Sun L, Zhang XX, Liu ZH, Song W (2007) Leifsonia ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 57:405–408Google Scholar
  108. Robinson CJ, Bohannan BJ, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74(3):453–476Google Scholar
  109. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent development and applications. FEMS Micribiol Lett 278:1–9Google Scholar
  110. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth promoting and antagonistic abilities. Can J Microbiol 50:239–249Google Scholar
  111. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145Google Scholar
  112. Shimizu M, Suzuki T, Mogami O, Kunoh H (2005) Disease resistance of plants induced by endophytic actinomycetes. In: Tsuyumu S, Leach JE, Shiraishi T, Wolpert T (eds) Genomic and genetic analysis of plant parasitism and defense. APS, St. Paul, pp 292–293Google Scholar
  113. Shimizu M, Yazawa S, Ushijima Y (2009) A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J Gen Plant Pathol 75:27–36Google Scholar
  114. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Google Scholar
  115. Snipes CE, Duebelbeis DO, Olson M, Hahn DR, Dent WH, Gilbert JR, Werk TL, Davis GE, Lee-Lu R, Graupner PR (2007) The ansacarbamitocins: polar ansamitocin derivatives. J Nat Prod 70:1578–1581Google Scholar
  116. Song GC, Yasir M, Bibi F, Chung EJ, Jeon CO, Chung YR (2010) Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.019919-0 Google Scholar
  117. Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–93Google Scholar
  118. Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 3–29Google Scholar
  119. Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502Google Scholar
  120. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268Google Scholar
  121. Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263Google Scholar
  122. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136Google Scholar
  123. Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390Google Scholar
  124. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19Google Scholar
  125. Suwanborirux K, Chang CJ, Spjut RW, Cassady JM (1990) Ansamitocin P-3, a maytansinoid from Claopodium crispifolium and Anomodon attenuatus or associated actinomycetes. Experientia 46:117–120Google Scholar
  126. Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385Google Scholar
  127. Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695Google Scholar
  128. Taechowisan T, Wanbanjob A, Tuntiwachwuttikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol 56(2):113–117Google Scholar
  129. Taechowisan T, Lu CH, Shen YM, Lumyong S (2007a) 4-arylcoumarin inhibits immediate-type allergy. Food Agric Immunol 18:203–211Google Scholar
  130. Taechowisan T, Lu CH, Shen YM, Lumyong S (2007b) Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J Cancer Res Trer 3:86–91Google Scholar
  131. Taechowisana T, Wanbanjob A, Tuntiwachwuttikul P, Liu JK (2009) Anti-inflammatory activity of lansais from endophytic Streptomyces sp. SUC1 in LPS-induced RAW 264.7 cells. Food Agric Immunol 20:67–77Google Scholar
  132. Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280Google Scholar
  133. Thamchaipenet A, Indananda C, Bunyoo C, Duangmal K, Matsumoto A, Takahashi Y (2010) Actinoallomurus acaciae sp. nov., a novel endophytic actinomycete isolated from Acacia auriculiformis A. Cunn. ex Benth. in Thailand. Int J Syst Evol Microbiol 60:554–559Google Scholar
  134. Tian XL, Cao LX, Tan HM, Han WQ, Chen M, Liu YH, Zhou SN (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53:700–707Google Scholar
  135. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385Google Scholar
  136. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E (2007) Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804Google Scholar
  137. Tuntiwachwuttikul P, Taechowisan T, Wanbanjob A, Thadaniti S, Taylor WC (2008) Lansai A–D, secondary metabolites from Streptomyces sp. SUC1. Tetrahedron 64:7583–7586Google Scholar
  138. Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanumtuberosum L.). FEMS Microbiol Ecol 64:283–296Google Scholar
  139. Velazquez E, Rojas M, Lorite MJ, Rivas R, Zurdo-Pineiro JL, Heydrich M, Bedmar EJ (2008) Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of medullary parenchym of the stem of healthy sugarcane plants. J Basic Microbiol 48:118–124Google Scholar
  140. Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009a) Endophytic actinomycetes from Azadirachta indica A. Juss: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756Google Scholar
  141. Verma VC, Kharwar RN, Strobel GA (2009b) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 11:1511–1532Google Scholar
  142. Vickers JC, Williams ST, Ross GW (1984) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic, Orlando, pp 553–561Google Scholar
  143. Wang HX, Geng ZL, Zeng Y, Shen YM (2008) Enrichment plant microbiota for a metagenomic library construction. Environ Microbiol 10:2684–2691Google Scholar
  144. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2010) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. doi: 10.1111/j.1574-6976.2010.00249.x Google Scholar
  145. Xie QY, Wang C, Wang R, Qu Z, Lin HP, Goodfellow M, Hong K (2010) Jishengella endophytica gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.025288-0 Google Scholar
  146. Xing K, Qin S, Fei SM, Lin Q, Bian GK, Miao Q, Wang Y, Cao CL, Tang SK, Jiang JH, Li WJ (2010) Nocardia endophytica sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.027391-0 Google Scholar
  147. Yan LL, Han NN, Zhang YQ, Yu LY, Chen J, Wei YZ, Li QP, Tao L, Zheng GH, Yang SE, Jiang CX, Zhang XD, Huang Q, Habdin X, Hu QB, Li Z, Liu SW, Zhang ZZ, He QY, Si SY, Sun CH (2010) Antimycin A18 produced by an endophytic Streptomyces albidoflavus isolated from a mangrove plant. J Antibiot 63:259–261Google Scholar
  148. Yuan HM, Zhang XP, Zhao K, Zhong K, Gu YF, Lindstrom K (2008) Genetic characterisation of endophytic actinobacteria isolated from the medicinal plants in Sichuan. Ann Microbiol 58(4):597–604Google Scholar
  149. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771Google Scholar
  150. Zhao PJ, Fan LM, Li GH, Zhu N, Shen YM (2005) Antibacterial and antitumor macrolides from Streptomyces sp. ls9131. Arch Pharm Res 28:1228–1232Google Scholar
  151. Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris root. Int J Syst Evol Microbiol 59:2383–2387Google Scholar
  152. Zhao GZ, Li J, Huang HY, Zhu WY, Zhao LX, Tang SK, Xu LH, Li WJ (2010a) Pseudonocardia artemisiae sp. nov., a novel actinobacterium isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.021931-0 Google Scholar
  153. Zhao GZ, Li J, Qin S, Huang HY, Zhu WY, Xu LH, Li WJ (2010b) Streptomyces artemisiae sp. nov., a novel actinomycete isolated from surface-sterilized Artemisia annua L. tissue. Int J Syst Evol Microbiol 60:27–32Google Scholar
  154. Zhao K, Penttinen P, Guan TW, Xiao J, Chen Q, Xu J, Lindström K, Zhang LL, Zhang XP, Strobel GA (2010c) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol. doi: 10.1007/s00284-010-9685-3 Google Scholar
  155. Zhu N, Zhao P, Shen Y (2009) Selective isolation and ansamycin-targeted screenings of commensal actinomycetes from the “maytansinoids-producing” arboreal Trewia nudiflora. Curr Microbiol 58:87–94Google Scholar
  156. Zin NM, Sarmin NIM, Ghadin N, Basri DF, Sidik NM, Hess WM, Strobel GA (2007) Bioactive endophytic streptomycetes from the Malay Peninsula. FEMS Microbiol Lett 274:83–88Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life ScienceXuzhou Normal UniversityXuzhouPeople’s Republic of China
  2. 2.The Key Laboratory for Microbial Resources of the Ministry of Education, People’s Republic of China, and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations