Applied Microbiology and Biotechnology

, Volume 89, Issue 5, pp 1551–1561

Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response

  • Elena Jiménez-Martí
  • Mercè Gomar-Alba
  • Antonio Palacios
  • Anne Ortiz-Julien
  • Marcel-li del Olmo
Applied Microbial and Cell Physiology


During the transformation of grape must sugars in ethanol, yeasts belonging to Saccharomyces cerevisiae strains are particularly involved. One of the stress conditions that yeast cells have to cope with during vinification, especially at the time of inoculation into must, is osmotic stress caused by high sugar concentrations. In this work, we compare several laboratory and wine yeast strains in terms of their ability to start growth in must. By means of transcriptomic approaches and the determination of glycerol intracellular content, we propose several clues for yeast strains to adapt to the wine production conditions: the high expression of genes involved in both biosynthetic processes and glycerol biosynthesis, and the appropriate levels of intracellular glycerol. Besides, we demonstrate that the pre-adaptation of the wine yeast strains showing growth problems at the beginning of vinification in a rehydration medium containing 2% or 5% glucose (depending on the yeast strain considered) may increase their vitality when inoculated into high sugar media.


Wine yeasts Saccharomyces cerevisiae Osmotic stress Vinification Glycerol Gene expression Vitality 


  1. Attfield PV (1997) Stress tolerance. The key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357CrossRefGoogle Scholar
  2. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212CrossRefGoogle Scholar
  3. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Yeast and biochemistry of ethanol fermentation. Principles and practices of winemaking. The Chapman & Hall Enology Library, New York, pp 123–126Google Scholar
  4. Cambon B, Monteil V, Remize F, Camarasa C, Dequin S (2006) Effects of GPD1 overexpression in Saccharomyces cerevisiae comercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol 72:4688–4694CrossRefGoogle Scholar
  5. Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo M, Aranda A (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114:83–91CrossRefGoogle Scholar
  6. Carrasco P, Pérez-Ortín JE, del Olmo M (2003) Arginase activity is a useful marker for nitrogen limitation during alcoholic fermentation. Syst Appl Microbiol 26:471–479CrossRefGoogle Scholar
  7. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of gene genome expression in response to environmental changes. Mol Biol Cell 12:323–337Google Scholar
  8. Degré R (1993) Selection and commercial cultivation of wine yeasts and bacteria. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Philadephia, pp 421–447Google Scholar
  9. Erasmus DJ, van der Merwe GK, van Vuuren HJJ (2003) Genome-wide analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res 3:375–399CrossRefGoogle Scholar
  10. Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transportes family, Stl1p, is the glycerol-H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076CrossRefGoogle Scholar
  11. Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. EMBO J 17:5606–5614CrossRefGoogle Scholar
  12. Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704CrossRefGoogle Scholar
  13. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257Google Scholar
  14. Hohmann S, Mager WH (2003) Yeast stress responses Springer-Verlag. Heidelberg, BerlinCrossRefGoogle Scholar
  15. Holst B, Lunde C, Lages F, Oliveira R, Lucas C, Kielland-Brandt MC (2000) GUP1 and its close homologue GUP2, encoding multimembrane-sapnning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37:108–124CrossRefGoogle Scholar
  16. Iwaki T, Tamai Y, Watanabe Y (1999) Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionarlly homologous to the Saccharomyces cerevisiae HOG1 gene. Microbiology 145:241–248CrossRefGoogle Scholar
  17. Jiménez-Martí E, del Olmo M (2008) Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation. FEMS Yeast Res 8:245–256CrossRefGoogle Scholar
  18. Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M (2009) Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. Int J Food Microbiol 130:122–130CrossRefGoogle Scholar
  19. Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066CrossRefGoogle Scholar
  20. Lages F, Lucas C (1997) Contribution to the physiological characterization of glycerol active uptake in Saccharomyces cerevisiae. Biochem Biophys Acta 1322:8–18CrossRefGoogle Scholar
  21. Llauradó JM, Rozés N, Constantí M, Mas A (2005) Study of some Saccharomyces cerevisiae strains for winemaking after preadaptation at low temperatures. J Agric Food Chem 53:1003–1011CrossRefGoogle Scholar
  22. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371Google Scholar
  23. Mendes-Ferreira A, del Olmo M, García-Martínez J, Jiménez-Martí E, Mendes-Faia A, Pérez-Ortín JE, Leao C (2007) Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 73:3049–3060CrossRefGoogle Scholar
  24. Novo M, Beltran G, Guillamon RN, JM SS, Leberre V, François J, Mas A (2007) Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation. FEMS Yeast Res 7:304–316CrossRefGoogle Scholar
  25. Panadero J, Hernández-López MJ, Prieto JA, Randez-Gil F (2007) Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker’s yeast. Appl Environ Microbiol 73:4824–4831CrossRefGoogle Scholar
  26. Pavlik P, Simon M, Schuster T, Ruis H (1993) The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24:21–25CrossRefGoogle Scholar
  27. Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E (2002) Wine yeast strains engineered for glycogen overproduction display an enhanced viability under glucose deprivation conditions. Appl Environ Microbiol 68:3339–3344CrossRefGoogle Scholar
  28. Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E (2009) Fermentative capacity of dry active yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol 81:951–960CrossRefGoogle Scholar
  29. Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Ariño J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255CrossRefGoogle Scholar
  30. Pretorius IS (2000) Tailoring wine yeasts for the new millenium: novel approaches to the ancient art of winemaking. Yeast 16:675–729CrossRefGoogle Scholar
  31. Querol A, Barrio E, Huerta T, Ramón D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953Google Scholar
  32. Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161Google Scholar
  33. Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149Google Scholar
  34. Rep M, Albertyn J, Thevelein J, Prior BA, Hohmann S (1999a) Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715–727CrossRefGoogle Scholar
  35. Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999b) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485Google Scholar
  36. Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300CrossRefGoogle Scholar
  37. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2001) Cytology, taxonomy and ecology of grape and wine yeast. In: Ribéreau-Gayon P (ed) The microbiology of wine and vinifications. Wiley, New York, pp 1–50Google Scholar
  38. Ronnow B, Kielland-Brandt MC (1993) GUT2, a gene doe mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9:1121–1130CrossRefGoogle Scholar
  39. Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385CrossRefGoogle Scholar
  40. Rossignol T, Postaire O, Storaï J, Blondin B (2006) Analysis of the genomic response of a wine yeast to rehydration and inoculation. Appl Microbiol Biotechnol 5:699–712CrossRefGoogle Scholar
  41. Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282CrossRefGoogle Scholar
  42. Schmittgen T, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefGoogle Scholar
  43. Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68:292–304CrossRefGoogle Scholar
  44. Zuzuarregui A, del Olmo M (2004) Analysis of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie Leeuwenhoek 85:271–280CrossRefGoogle Scholar
  45. Zuzuarregui A, Monteoliva L, Gil C, del Olmo M (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72:836–847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elena Jiménez-Martí
    • 1
  • Mercè Gomar-Alba
    • 1
  • Antonio Palacios
    • 2
  • Anne Ortiz-Julien
    • 3
  • Marcel-li del Olmo
    • 1
  1. 1.Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotSpain
  2. 2.Universidad de la RiojaLogroñoSpain
  3. 3.Lallemand SASBlagnac CedexFrance

Personalised recommendations