Applied Microbiology and Biotechnology

, Volume 89, Issue 3, pp 585–592 | Cite as

Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874

  • Markus Michael MüllerEmail author
  • Barbara Hörmann
  • Michaela Kugel
  • Christoph Syldatk
  • Rudolf Hausmann
Biotechnological Products and Process Engineering


A lack of understanding of the quantitative rhamnolipid production regulation in bioreactor cultivations of Pseudomonas aeruginosa and the absence of respective comparative studies are important reasons for achieving insufficient productivities for an economic production of these biosurfactants. The Pseudomonas strains DSM 7108 and DSM 2874 are described to be good rhamnolipid over-producers. The strain PAO1 on the other hand is the best analyzed type strain for genetic regulation mechanisms in the species P. aeruginosa. These three strains were cultivated in a 30-L bioreactor with a medium containing nitrate and sunflower oil as sole C-source at 30 and 37 °C. The achieved maximum rhamnolipid concentrations varied from 7 to 38 g/L, the volumetric productivities from 0.16 to 0.43 g/(L·h), and the cellular yield from 0.67 to 3.15 g/g, with PAO1 showing the highest results for all of these variables. The molar di- to mono-rhamnolipid ratio changed during the cultivations; it was strain dependent but not significantly influenced by the temperature. This study explicitly shows that the specific rhamnolipid synthesis rate per cell follows secondary metabolite-like courses coinciding with the transition to the stationary phase of typical logistic growth behavior. However, the rhamnolipid synthesis was already induced before N-limitation occurred.


Rhamnolipid Biosurfactant Renewable resources Pseudomonas Specific productivity Glycolipid 



We want to thank the Fachagentur Nachwachsende Rohstoffe e.V. (FNR) for funding the project.


  1. Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefGoogle Scholar
  2. Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168CrossRefGoogle Scholar
  3. Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol Lett 18:263–268Google Scholar
  4. Bertani G (1951) Studies on lysogenisis: the mode of phage II liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300Google Scholar
  5. Burger M, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Fed Proc 238:2595–2602Google Scholar
  6. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  7. Déziel E, Lepine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta Mol Cell Biol Lipids 1485:145–152Google Scholar
  8. Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263CrossRefGoogle Scholar
  9. Erkmen O, Alben E (2002) Mathematical modeling of citric acid production and biomass formation by Aspergillus niger in undersized semolina. J Food Eng 52:161–166CrossRefGoogle Scholar
  10. Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. German Patent US005658793AGoogle Scholar
  11. Guerra-Santos L, Kappeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305Google Scholar
  12. Hancock RE, Carey AM (1979) Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910Google Scholar
  13. Hauser G, Karnovsky ML (1957) Rhamnose and rhamnolipide biosynthesis by Pseudomonas aeruginosa. J Biol Chem 224:91–105Google Scholar
  14. Hauser G, Karnovsky ML (1958) Studies on the biosynthesis of l-rhamnose. J Biol Chem 233:287–291Google Scholar
  15. Häußler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593Google Scholar
  16. Hembach T (1994) Untersuchungen zur mikrobiellen Umsetzung von Maiskeimöl zu Rhamnolipid. PhD Thesis, University of HohenheimGoogle Scholar
  17. Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509 T. Eur J Lipid Sci Technol 112:674–680CrossRefGoogle Scholar
  18. Jarvis FG, Johnson MJ (1949) A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126CrossRefGoogle Scholar
  19. Leitermann F (2008) Biotechnologische Herstellung mikrobieller Rhamnolipide. PhD Thesis, Karlsruhe Institute of Technology (KIT)Google Scholar
  20. Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  21. Manresa M, Bastida J, Mercade M, Robert M, Deandres C, Espuny M, Guinea J (1991) Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J Ind Microbiol 8:133–136CrossRefGoogle Scholar
  22. Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961CrossRefGoogle Scholar
  23. Medina G, Juarez K, Diaz R, Soberon-Chavez G (2003) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiol-SGM 149:3073–3081CrossRefGoogle Scholar
  24. Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor cultivations. Appl Microbiol Biotechnol 87:167–174CrossRefGoogle Scholar
  25. Mulligan CN, Mahmourides G, Gibbs BF (1989) The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 12:37–43CrossRefGoogle Scholar
  26. Nitschke M, Costa SGVAO, Haddad R, Goncalves LAG, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21:1562–1566CrossRefGoogle Scholar
  27. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428CrossRefGoogle Scholar
  28. Pajarron AM, Dekoster CG, Heerma W, Schmidt M, Haverkamp J (1993) Structure identification of natural rhamnolipid mixtures by fast-atom-bombardment tandem mass-spectrometry. Glycoconj J 10:219–226CrossRefGoogle Scholar
  29. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718CrossRefGoogle Scholar
  30. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281CrossRefGoogle Scholar
  31. Ramana KV, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45:249–257CrossRefGoogle Scholar
  32. Ramana KV, Charyulu N, Karanth NG (1991) A mathematical model for the production of biosurfactants of Pseudomonas aeruginosa CFTR-6: production of biomass. J Chem Technol Biotechnol 51:525–538CrossRefGoogle Scholar
  33. Robert M, Mercadé ME, Bosch MP, Parra JL, Espuny MJ, Manresa A, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11:871–874CrossRefGoogle Scholar
  34. Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid-chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693:7–13CrossRefGoogle Scholar
  35. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725CrossRefGoogle Scholar
  36. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964CrossRefGoogle Scholar
  37. Syldatk C, Lang S, Matulovic U, Wagner F (1985a) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch C 40:61–67Google Scholar
  38. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985b) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes. Z Naturforsch [C] 40:51–60Google Scholar
  39. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571CrossRefGoogle Scholar
  40. Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502Google Scholar
  41. Wei Y-H, Chou C-L, Chang J-S (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146CrossRefGoogle Scholar
  42. Williams P, Camara M (2009) Quorum-sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191CrossRefGoogle Scholar
  43. Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K (1990) Modeling of bacterial growth curve. Appl Environ Microbiol 56:1875–1881Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Markus Michael Müller
    • 1
    Email author
  • Barbara Hörmann
    • 1
  • Michaela Kugel
    • 1
  • Christoph Syldatk
    • 1
  • Rudolf Hausmann
    • 1
  1. 1.Institute of Process Engineering and Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations