Applied Microbiology and Biotechnology

, Volume 89, Issue 2, pp 271–280 | Cite as

The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

  • Alice Vilela-Moura
  • Dorit Schuller
  • Arlete Mendes-Faia
  • Rui D. Silva
  • Susana R. Chaves
  • Maria João Sousa
  • Manuela Côrte-RealEmail author


Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this mini-review, we present an overview of fermentation conditions and grape-must composition favoring acetic acid formation, as well the metabolic pathways leading to its formation and degradation by yeast. The negative effect of acetic acid on the fermentative performance of Saccharomyces cerevisiae will also be covered, including its role as a physiological inducer of apoptosis. Finally, currently available wine deacidification processes and new proposed solutions based on zymological deacidification by select S. cerevisiae strains will be discussed.


Yeast Acetic acid Metabolism Wine Volatile acidity Deacidification 



This work was funded by the portuguese research agency (Fundação para a Ciência e Técnologia - FCT) through the Centre of Molecular and Environmental Biology - University of Minho (CBMA-UM), and the Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology (IBB/CGB-UTAD), by the projects PTDC/AGRALI/71460/2006, POCI/AGR/56102/2004, and PTDC/AGR-ALI/103392/2008 from FCT. Research leading to this work has also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 232454.


  1. Alexandre H, Charpentier C (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J Ind Microbiol Biotechnol 20:20–27CrossRefGoogle Scholar
  2. Alexandre H, Nguyen Van Long T, Feuillat M, Charpentier C (1994) Contribution à l’étude des bourbes: influence sur la fermentescibilité des moûts. Rev Fr Eno 146:11–20Google Scholar
  3. Amerine MA, Berg HW, Cruess WV (1972) The technology of wine making, 3rd edn. The Avi Publishing Company, WestportGoogle Scholar
  4. Arneborg N, Jespersen L, Jakobsen M (2000) Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174:125–128CrossRefGoogle Scholar
  5. Barbosa C, Falco V, Mendes-Faia A, Mendes-Ferreira A (2009) Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J Biosci Bioeng 108:99–104CrossRefGoogle Scholar
  6. Barnett JA, Payne RW, Yarrow D (1990) Yeast. Characteristics and identification, 2nd edn. Cambrige University Press, CambrigeGoogle Scholar
  7. Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine—a review. Int J Food Microbiol 125:60–70CrossRefGoogle Scholar
  8. Beltran G, Novo M, Guillamon JM, Mas A, Rozes N (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol 121:169–177CrossRefGoogle Scholar
  9. Bely M, Rinaldi A, Dubourdieu D (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 96:507–512CrossRefGoogle Scholar
  10. Bony M, Bidart F, Camarasa C, Ansanay V, Dulau L, Barre P, Dequin S (1997) Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation. FEBS Lett 410:452–456CrossRefGoogle Scholar
  11. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Principles and practices of winemaking, 1st edn. Chapman & Hall, New YorkGoogle Scholar
  12. Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry 70:231–239Google Scholar
  13. Buttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Frohlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246CrossRefGoogle Scholar
  14. Casal M, Leão C (1995) Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: Specificity of the transport systems and their regulation. Biochim Biophys Acta 1267:122–130CrossRefGoogle Scholar
  15. Casal M, Cardoso H, Leão C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142:1385–1390CrossRefGoogle Scholar
  16. Casal M, Cardoso H, Leão C (1998) Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae. Appl Environ Microbiol 64:665–668Google Scholar
  17. Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181:2620–2623Google Scholar
  18. Ciani M, Maccarelli F (1998) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203CrossRefGoogle Scholar
  19. Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp.:Effects on growth, substrate and products. J Appl Bacteriol 63:551–558Google Scholar
  20. Coote N, Kirsop HH (1974) The content of some organic acids in beer and other fermented media. J Inst Brew 80:474–483Google Scholar
  21. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249CrossRefGoogle Scholar
  22. Delfini C, Costa A (1993) Effects of the grape must lees and insoluble materials on the alcoholic fermentation rate and on the production of acetic acid, pyruvic acid and acetaldehyde. Am J Enol Vitic 44:86–92Google Scholar
  23. dos Santos MM, Gombert AK, Christensen B, Olsson L, Nielsen J (2003) Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13 C-labeled substrates. Eukaryot Cell 2:599–608CrossRefGoogle Scholar
  24. Du Toit WJ, Lambrechts MG (2002) The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int J Food Microbiol 74:57–64CrossRefGoogle Scholar
  25. Erasmus DJ, Cliff M, van Vuuren HJJ (2004) Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of Icewine. Am J Enol Vitic 55:371–378Google Scholar
  26. Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797CrossRefGoogle Scholar
  27. Fleet GH, Heard GM (1993) Yeasts-growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 27–54Google Scholar
  28. Fugelsang KC, Edwards CG (2007) Wine microbiology. Practical applications and procedures, 2nd edn. Springer Science Business Media, New YorkGoogle Scholar
  29. Gerós H, Azevedo MM, Cássio F (2000a) Biochemical studies on the production of acetic acid by the yeast Dekkera anomala. Food Technol Biotechnol 38:59–62Google Scholar
  30. Gerós H, Cassio F, Leão C (2000b) Utilization and transport of acetic acid in Dekkera anomala and their implications on the survival of the yeast in acidic environments. J Food Prot 63:96–101Google Scholar
  31. Giannattasio S, Guaragnella N, Côrte-Real M, Passarella S, Marra E (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98CrossRefGoogle Scholar
  32. Guaragnella N, Pereira C, Sousa MJ, Antonacci L, Passarella S, Côrte-Real M, Marra E, Giannattasio S (2006) Yca1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett 580:6880–6884CrossRefGoogle Scholar
  33. Hauptmann P, Riel C, Kunz-Schughart LA, Frohlich KU, Madeo F, Lehle L (2006) Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol 59:765–778CrossRefGoogle Scholar
  34. Husnik JI, Volschenk H, Bauer J, Colavizza D, Luo Z, van Vuuren HJ (2006) Metabolic engineering of malolactic wine yeast. Metab Eng 8:315–323CrossRefGoogle Scholar
  35. Husnik JI, Delaquis PJ, Cliff MA, van Vuuren HJJ (2007) Functional analyses of the malolactic wine yeast ml01. Am J Enol Vitic 58:42–52Google Scholar
  36. Jost and Piendl (1975) Technological influences on the formation of acetate during fermentation. Am Soc Brew Chem 34:31–37Google Scholar
  37. Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984a) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48:153–156Google Scholar
  38. Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984b) Metabolism of acetic acid bacteria in grape must: consequences on alcoholic and malolactic fermentation. Sci Aliments 4:247–255Google Scholar
  39. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253CrossRefGoogle Scholar
  40. Kissova I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336Google Scholar
  41. Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581:2935–2942CrossRefGoogle Scholar
  42. Kruckeber AL, Dickinson JR (2004) Carbon metabolism. In: Dickinson JR, Schweizer M (eds) The metabolism and molecular physiology of Saccharomyces cerevisiae. CRC, New York, pp 42–76Google Scholar
  43. Leão C, Van Uden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl Microbiol Biotechnol 23:389–393CrossRefGoogle Scholar
  44. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5CrossRefGoogle Scholar
  45. Llauradó JM, Rozès N, Constantí M, Mas A (2005) Study of some Saccharomyces cerevisiae strains for winemaking after preadaptation at low temperatures. J Agric Food Chem 53:1003–1011CrossRefGoogle Scholar
  46. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Leeuwenhoek 76:317–331CrossRefGoogle Scholar
  47. Ludovico P (1999) Efeitos do ácido acético no potencial de membrana mitocondrial e sua relação com a perda de integridade e viabilidade celular em Zygosaccharomyces bailii e Saccharomyces cerevisiae. Estudos por citometria de fluxo e espectrofluorimetria. Tese de Mestrado, Universidade do MinhoGoogle Scholar
  48. Ludovico P, Sousa MJ, Silva MT, Leão C, Côrte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415Google Scholar
  49. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606CrossRefGoogle Scholar
  50. Main GL, Threlfall RT, Morris JR (2007) Reduction of malic acid in wine using natural and genetically enhanced microorganisms. Am J Enol Vitic 58:341–345Google Scholar
  51. Martinou JC, Desagher S, Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2:41–43CrossRefGoogle Scholar
  52. Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P, Dubourdieu D, Yvert G (2007) Single qtl mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952CrossRefGoogle Scholar
  53. Massot A, Mietton-Peuchot M, Peuchot C, Milisic V (2008) Nanofiltration and reverse osmosis in winemaking. Desalination 231:283–289CrossRefGoogle Scholar
  54. Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N (2006) Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem Biophys Res Commun 339:485–489CrossRefGoogle Scholar
  55. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456CrossRefGoogle Scholar
  56. Monk PR, Cowley PJ (1984) Effect of nicotinic acid and sugar concentration of grape juice and temperature on accumulation of acetic acid yeast fermentation. J Ferment Technol 62:515–521Google Scholar
  57. Moruno EG, Delfini C, Pessione E, Giunta C (1993) Factors affecting acetic acid production by yeasts in strongly clarified grape musts. Microbios 74:249–256Google Scholar
  58. Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H + exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656CrossRefGoogle Scholar
  59. Office Internationale de la Vigne et du Vin (2009) Compendium of international methods of wine and must analysis. Vol1 OIV, Paris, p 419Google Scholar
  60. Office Internationale de la Vigne et du Vin (2010) International code of oenological practices. OIV, Paris, p 274Google Scholar
  61. Orlić S, Arroyo-López FN, Huić-Babić K, Lucilla I, Querol A, Barrio E (2010) A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. J Appl Microbiol 108:73–80CrossRefGoogle Scholar
  62. Paiva S, Althoff S, Casal M, Leão C (1999) Transport of acetate in mutants of Saccharomyces cerevisiae defective in monocarboxylate permeases. FEMS Microbiol Lett 170:301–306CrossRefGoogle Scholar
  63. Paiva S, Devaux F, Barbosa S, Jacq C, Casal M (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21:201–210CrossRefGoogle Scholar
  64. Pampulha MA, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550CrossRefGoogle Scholar
  65. Pampulha MA, Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34:375–380CrossRefGoogle Scholar
  66. Patel S, Shibamoto S (2002) Effect of different strains of Saccharomyces cerevisiae on production of volatiles in Napa Gamay wine and Petite Syrah wine. J Agric Food Chem 50:5649–5653CrossRefGoogle Scholar
  67. Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M (2007) ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 66:571–582CrossRefGoogle Scholar
  68. Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Sousa MJ, Côrte-Real M (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76:1398–1410CrossRefGoogle Scholar
  69. Perez L, Valcarcel MJ, Gonzalez P, Domecq B (1991) Influence of Botrytis infection of the grapes on the biological aging process of Fino Sherry. Am J Enol Vitic 42:58–62Google Scholar
  70. Pinto I, Cardoso H, Leão C (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33:1350–1352CrossRefGoogle Scholar
  71. Pozo-Bayon MA, GA E, Polo MC, Tenorio C, Martin-Alvarez PJ, Calvo de la Banda MT, Ruiz-Larrea F, Moreno-Arribas MV (2005) Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J Agric Food Chem 53:8729–8735CrossRefGoogle Scholar
  72. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729CrossRefGoogle Scholar
  73. Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613–1621CrossRefGoogle Scholar
  74. Prudêncio C, Sansonetty F, Côrte-Real M (1998) Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry 31:307–313CrossRefGoogle Scholar
  75. Radler F (1993) Yeasts-metabolism of organic acids. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 165–223Google Scholar
  76. Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159CrossRefGoogle Scholar
  77. Ribeiro GF, Côrte-Real M, Johansson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell 17:4584–4591CrossRefGoogle Scholar
  78. Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1975) Les mécanismes des fermentations. In: Chez Dunod (eds) Traité d`œnologie, sciences et techniques du vin, Tome 2, Dunod, Paris. pp 511–556Google Scholar
  79. Ribéreau-Gayon P, Lafon-Lafourcade S, Dubourdieu D, Lucmaret V, Larue F (1979) Métabolisme de Saccharomyces cerevisiae dans le moût de raisins parasités par Botrytis cinerea. C R Acad Sci Fr 289:441–444Google Scholar
  80. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006a) Alcohols and other volatile compounds. The chemistry of wine stabilization and treatments. Handbook of enology, vol. 2, 2nd edn. Wiley, Chichester, pp 51–64Google Scholar
  81. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006b) The microbiology of wine and vinifications. Handbook of enology, vol. 1, 2nd edn. Wiley, ChichesterGoogle Scholar
  82. Rodrigues F (1998) Estudos sobre a regulação do metabolismo intracelular de ácido acético na levedura Zygosaccharomyces bailli ISA 1307. Tese de Mestrado, Universidade do Minho, BragaGoogle Scholar
  83. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2:39–46Google Scholar
  84. Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 75:26–31CrossRefGoogle Scholar
  85. Romano P, Suzzi G, Comi G, Zironi R (1992) Higher alcohol and acetic acid production by apiculate wine yeasts. J Appl Bacteriol 73:126–130Google Scholar
  86. Romano P, Marchese R, Laurita C, Salzano G, Turbanti L (1999) Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World J Microbiol Biotechnol 15:451–545CrossRefGoogle Scholar
  87. Sá-Correia I (1986) Synergistic effects of ethanol, octanoic, and decanoic acids on the kinetics and the activation parameters of thermal death in Saccharomyces bayanus. Biotechnol Bioeng 28:761–763CrossRefGoogle Scholar
  88. Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ADL gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: The NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220CrossRefGoogle Scholar
  89. Schauer A, Knauer H, Ruckenstuhl C, Fussi H, Durchschlag M, Potocnik U, Frohlich KU (2009) Vacuolar functions determine the mode of cell death. Biochim Biophys Acta 1793:540–545CrossRefGoogle Scholar
  90. Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68:292–304CrossRefGoogle Scholar
  91. Schuller D (2010) Better yeast for better wine—genetic improvement of Saccharomyces cerevisiae winemaking strains. In: Rai M, Kövics G (eds) Progress in mycology. Scientific Publishers, Jodhpur, pp 1–51Google Scholar
  92. Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160Google Scholar
  93. Silva S, Ramon-Portugal F, Andrade P, Abreu S, Texeira MD, Strehaiano P (2003) Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe. Am J Enol Vitic 54:50–55Google Scholar
  94. Shimazu Y, Watanabe M (1981) Effects of yeast strains and environmental conditions on formation of organic acid in must during fermentation. J Ferment Technol 59:27–32Google Scholar
  95. Sokolov S, Knorre D, Smirnova E, Markova O, Pozniakovsky A, Skulachev V, Severin F (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification. Biochim Biophys Acta 1757:1366–1370CrossRefGoogle Scholar
  96. Sousa MJ, Teixeira JA, Mota M (1993) Must deacidification with an induced flocculant yeast strain of Schizosaccharomyces pombe. Appl Microbiol Biotechnol 39:189–193CrossRefGoogle Scholar
  97. Sousa MJ, Rodrigues F, Côrte-Real M, Leao C (1998) Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology 144:665–670CrossRefGoogle Scholar
  98. Sponholz WR (1993) Wine spoilage by microorganisms. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 395–420Google Scholar
  99. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282:5617–5624CrossRefGoogle Scholar
  100. Tolkovsky AM, Xue L, Fletcher GC, Borutaite V (2002) Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84:233–240CrossRefGoogle Scholar
  101. Torrens J, Urpi P, Riu-Aumatell M, Vichi S, Lopez-Tamames E, Buxaderas S (2008) Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. Int J Food Microbiol 124:48–57CrossRefGoogle Scholar
  102. Valenti D, Vacca RA, Guaragnella N, Passarella S, Marra E, Giannattasio S (2008) A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Res 8:400–404CrossRefGoogle Scholar
  103. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:359–403Google Scholar
  104. Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157CrossRefGoogle Scholar
  105. Vilela-Moura A, Schuller D, Mendes-Faia A, Côrte-Real M (2008) Reduction of volatile acidity of wines by selected yeast strains. Appl Microbiol Biotechnol 80:881–890CrossRefGoogle Scholar
  106. Vilela-Moura A, Schuller D, Mendes-Faia A, Corte-Real M (2010a) Effect of refermentation conditions and micro-oxygenation on the reduction of volatile acidity by commercial S. cerevisiae strains and their impact on the aromatic profile of wines. Int J Food Microbiol 141:165–172CrossRefGoogle Scholar
  107. Vilela-Moura A, Schuller D, Mendes-Faia A, Côrte-Real M (2010b) Effects of acetic acid, ethanol, and SO2 on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains. Appl Microbiol Biotechnol 87:1317–1326CrossRefGoogle Scholar
  108. Volschenk H, Viljoen M, Grobler J, Bauer F, Lonvaud-Funel A, Denayrolles M, Subden RE, VanVuuren HJJ (1997) Malolactic fermentation in grape musts by a genetically engineered strain of Saccharomyces cerevisiae. Am J Enol Vitic 48:193–197Google Scholar
  109. Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Côrte-Real M, Frohlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974CrossRefGoogle Scholar
  110. Zoecklein BW, Fugelsang KC, Gump BH, Nury FS (1995) Wine analysis and production, 1st edn. Chapmann & Hall, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alice Vilela-Moura
    • 1
  • Dorit Schuller
    • 2
  • Arlete Mendes-Faia
    • 1
  • Rui D. Silva
    • 2
  • Susana R. Chaves
    • 2
  • Maria João Sousa
    • 2
  • Manuela Côrte-Real
    • 2
    Email author
  1. 1.Institute for Biotechnology and Bioengineering, Centre of Genomic and Biotechnology, (IBB/CGB-UTAD)Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Centre of Molecular and Environmental Biology (CBMA), Department of BiologyUniversity of MinhoBragaPortugal

Personalised recommendations