Advertisement

Applied Microbiology and Biotechnology

, Volume 88, Issue 5, pp 1215–1221 | Cite as

Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation

  • Takanori Tanino
  • Atsushi Hotta
  • Tomonori Ito
  • Jun Ishii
  • Ryosuke Yamada
  • Tomohisa Hasunuma
  • Chiaki Ogino
  • Naoto Ohmura
  • Takayuki Ohshima
  • Akihiko KondoEmail author
Bioenergy and Biofuels

Abstract

A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity.

Keywords

Xylose isomerase Xylose fermentation Xylitol Delta integration 

Notes

Acknowledgements

This research was supported by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science (21760639) and partially by the Global COE Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23:399–405CrossRefGoogle Scholar
  2. Bruinenberg PM, Peter HM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292CrossRefGoogle Scholar
  3. Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441CrossRefGoogle Scholar
  4. Eliasson A, Christensson C, Wahlbom CF, Hahn-hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1. XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386CrossRefGoogle Scholar
  5. Garay-Arroyo A, Covarrubias AA (1999) Three genes whose expression in induced by stress in Sacchromyces cerevisiae. Yeast 15:879–892CrossRefGoogle Scholar
  6. Karhumaa K, Garcia Saanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathway for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 5(6):5CrossRefGoogle Scholar
  7. Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414CrossRefGoogle Scholar
  8. Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccjaromyces cerevisiae. Appl Environ Microbiol 61:1580–1585Google Scholar
  9. Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783CrossRefGoogle Scholar
  10. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009a) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078CrossRefGoogle Scholar
  11. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009b) Alcholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047CrossRefGoogle Scholar
  12. Rizzi M, Harwark K, Erlemann P, Buithanh NA, Dellweg H (1998a) Purification and properties of the NAD+-xylitol dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67:20–24CrossRefGoogle Scholar
  13. Rizzi M, Harqart K, Buithanh NA, Dellweg H (1998b) A kinetic-study of the NAD+-xylitol dehydrogenase from the yeast Pichia pastoris. J Ferment Bioeng 67:25–30CrossRefGoogle Scholar
  14. Tajima N, Nogi Y, Fukasawa T (1985) Primary structure of Saccharomyces cerevisiae GAL7 gene. Yeast 1:67–77CrossRefGoogle Scholar
  15. Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88CrossRefGoogle Scholar
  16. Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249CrossRefGoogle Scholar
  17. Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose gene and its influence on xylose metabolim in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 gene. Appl Environ Microbiol 67:5668–5674CrossRefGoogle Scholar
  18. Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498CrossRefGoogle Scholar
  19. Yamanaka K (1969) Inhibition of D-xylose isomerase by pentitols and D-xylose. Arch Biochem Biophys 131:502–506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Takanori Tanino
    • 1
    • 2
  • Atsushi Hotta
    • 2
  • Tomonori Ito
    • 2
  • Jun Ishii
    • 3
  • Ryosuke Yamada
    • 2
  • Tomohisa Hasunuma
    • 3
  • Chiaki Ogino
    • 2
  • Naoto Ohmura
    • 2
  • Takayuki Ohshima
    • 1
  • Akihiko Kondo
    • 2
    Email author
  1. 1.Department of Chemical and Environmental Engineering, Graduate School of EngineeringGunma UniversityKiryuJapan
  2. 2.Department of Chemical Science and Engineering, Graduate School of EngineeringKobe UniversityKobeJapan
  3. 3.Organization of Advanced Science and technologyKobe UniversityKobeJapan

Personalised recommendations