Applied Microbiology and Biotechnology

, Volume 88, Issue 6, pp 1321–1331 | Cite as

Flocculation gene variability in industrial brewer’s yeast strains

  • Sebastiaan E. Van Mulders
  • Maarten Ghequire
  • Luk Daenen
  • Pieter J. Verbelen
  • Kevin J. Verstrepen
  • Freddy R. Delvaux
Applied Genetics and Molecular Biotechnology

Abstract

The brewer’s yeast genome encodes a ‘Flo’ flocculin family responsible for flocculation. Controlled floc formation or flocculation at the end of fermentation is of great importance in the brewing industry since it is a cost-effective and environmental-friendly technique to separate yeast cells from the final beer. FLO genes have the notable capacity to evolve and diverge many times faster than other genes. In actual practice, this genetic variability may directly alter the flocculin structure, which in turn may affect the flocculation onset and/or strength in an uncontrolled manner. Here, 16 ale and lager yeast strains from different breweries, one laboratory Saccharomyces cerevisiae and one reference Saccharomyces pastorianus strain, with divergent flocculation strengths, were selected and screened for characteristic FLO gene sequences. Most of the strains could be distinguished by a typical pattern of these FLO gene markers. The FLO1 and FLO10 markers were only present in five out of the 18 yeast strains, while the FLO9 marker was ubiquitous in all the tested strains. Surprisingly, three strongly flocculating ale yeast strains in this screening also share a typical ‘lager’ yeast FLO gene marker. Further analysis revealed that a complete Lg-FLO1 allele was present in these ale yeasts. Taken together, this explicit genetic variation between flocculation genes hampers attempts to understand and control the flocculation behavior in industrial brewer’s yeasts.

Keywords

Flocculation Saccharomyces cerevisiae Adhesin Tandem repeats Brewery fermentations 

Notes

Acknowledgments

SVM would like to thank Lynn Stichelbout for the excellent assistance with the interdelta analysis. Financial support from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen, Belgium) and the Belgian Federal Science Policy Office and European Space Agency PRODEX program is acknowledged. KJV also acknowledges support from National Institutes of Health grant P50GM068763, Human Frontier Science Program RGY79/2007, European Research Council Young Investigator grant 241426, VIB, K.U.Leuven, the Fonds Voor Wetenschappelijk Onderzoek–Vlaanderen (FWO)-Odysseus program, and the AB InBev Baillet-Latour foundation.

Supplementary material

253_2010_2843_MOESM1_ESM.pdf (333 kb)
ESM 1 (PDF 333 kb)

References

  1. ASBC. ASBC Methods of Analysis (8th ed.), American Society of Brewing Chemists; St. Paul, Minnesota (1992)Google Scholar
  2. Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM (2005) Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Yeast Res 5:1151–1156CrossRefGoogle Scholar
  3. Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936Google Scholar
  4. Borneman AR, Forgan AH, Pretorius IS, Chambers PJ (2008) Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8:1185–1195CrossRefGoogle Scholar
  5. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132CrossRefGoogle Scholar
  6. Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 58:637–644Google Scholar
  7. Caro LHP, Tettelin H, Vossen JH, Ram AFJ, Van Den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489CrossRefGoogle Scholar
  8. Claro FB, Rijsbrack K, Soares EV (2007) Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress. J Appl Microbiol 102:693–700CrossRefGoogle Scholar
  9. Damas-Buenrostro LC, Gracia-González G, Hernández-Luna CE, Galán-Wong LJ, Pereyra-Alférez B, Sierra-Benavides JA (2008) Detection of FLO genes in lager and wild yeast strains. J Am Soc Brew Chem 66:184–187Google Scholar
  10. Dengis PB, Rouxhet PG (1997) Surface properties of top- and bottom-fermenting yeast. Yeast 13:931–943CrossRefGoogle Scholar
  11. Dietvorst J, Brandt A (2008) Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation. Yeast 25:891–901CrossRefGoogle Scholar
  12. Dietvorst J, Brandt A (2010) Histone modifying proteins Gcn5 and Hda1 affect flocculation in Saccharomyces cerevisiae during high-gravity fermentation. Curr Genet 56(1):75–85CrossRefGoogle Scholar
  13. Douglas LM, Li L, Yang Y, Dranginis AM (2007) Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion. Eukaryot Cell 6:2214–2221CrossRefGoogle Scholar
  14. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294CrossRefGoogle Scholar
  15. Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623CrossRefGoogle Scholar
  16. Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae. Mol Microbiol 66:1276–1289CrossRefGoogle Scholar
  17. Fidalgo M, Barrales RR, Ibeas JI, Jimenez J (2006) Adaptive evolution by mutations in the FLO11 gene. Proc Natl Acad Sci 103:11228–11233CrossRefGoogle Scholar
  18. Fidalgo M, Barrales RR, Jimenez J (2008) Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 25:879–889CrossRefGoogle Scholar
  19. Fleming AB, Pennings S (2001) Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J 20:5219–4231CrossRefGoogle Scholar
  20. Gagiano M, Bauer FF, Pretorius IS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2:433–470Google Scholar
  21. Gonzalez SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 74:2314–2320CrossRefGoogle Scholar
  22. Goossens KVY, Willaert RG (2010) Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett. doi: 10.1007/s10529-010-0352-3 Google Scholar
  23. Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86:931–945CrossRefGoogle Scholar
  24. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052CrossRefGoogle Scholar
  25. Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucl Acids Res 24:2519–2524CrossRefGoogle Scholar
  26. Güldener U, Heinisch JJ, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucl Acids Res 30 (6 e23)Google Scholar
  27. Halme A, Bumgarner S, Styles CA, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405–415CrossRefGoogle Scholar
  28. Jin Y-L, Speers RA (2000) Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 58:108–116Google Scholar
  29. Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510Google Scholar
  30. Lawrence SJ, Gibson BR, Smart KA (2009) Expression of the cell wall mannoprotein genes CWP and DAN during industrial-scale lager fermentations. J Am Soc Brew Chem 67:58–62Google Scholar
  31. Lawrence SJ, Smart KA (2007) Impact of CO2-induced anaerobiosis on the assessment of brewing yeast flocculation. J Am Soc Brew Chem 65:208–213Google Scholar
  32. Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbial Lett 221:249–255Google Scholar
  33. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341CrossRefGoogle Scholar
  34. Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144:967–978Google Scholar
  35. Liu N, Wang D, Wang ZY, He XP, Zhang B (2007) Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Res 7:1362–1370CrossRefGoogle Scholar
  36. Manthey GM, Navarro MS, Bailis AM (2004) DNA fragment transplacement in Saccharomyces cerevisiae: some genetic considerations. Methods Mol Biol 262:157–172Google Scholar
  37. Miki BLA, Poon NH, James AP, Seligy VL (1982) Possible mechanisms for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bact 150:878–889Google Scholar
  38. Mortensen HD, Dupont K, Jespersen L, Willats WGT, Arneborg N (2007) Identification of amino acids involved in the FLO11p-mediated adhesion of Saccharomyces cerevisiae to a polystyrene surface using phage display with competitive elution. J Appl Microbiol 103:1041–1047CrossRefGoogle Scholar
  39. Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129CrossRefGoogle Scholar
  40. Ogata T, Izumikawa M, Kohno K, Shibata K (2008) Chromosomal location of Lg-FLO1 in bottom-fermenting yeast and the FLO5 locus of industrial yeast. J Appl Microbiol 105:1186–1198CrossRefGoogle Scholar
  41. Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420Google Scholar
  42. Powell CD, Diacetis AN (2007) Long term serial repitching and the genetic and phenotypic stability of brewer’s yeast. J Inst Brew 113:67–74Google Scholar
  43. Powell CD, Quain D, Smart K (2003) The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Microbiol Rev 3:149–157Google Scholar
  44. Querol A, Bond U (2009) The complexand dynamic genomes of industrial yeasts. FEMS Microbiol Lett 293:1–10CrossRefGoogle Scholar
  45. Rainieri S, Kodama Y, Kaneko Y, Mikata K, Nakao Y, Ashikari T (2006) Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Appl Environ Microbiol 72:3968–3974CrossRefGoogle Scholar
  46. Ramsook C, Tan C, Garcia MC, Fung R, Soybelman G, Henry R, Litewka A, O’Meally S, Otoo HN, Khalaf RA, Dranginis AM, Gaur NK, Klotz SA, Rauceo JM, Jue CK, Lipke PN (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9:393–404CrossRefGoogle Scholar
  47. Rando OJ, Verstrepen K (2007) Timescales of genetic and epigenetic inheritance. Cell 128:655–668CrossRefGoogle Scholar
  48. Rhymes MR, Smart KA (2000) The relationship between flocculation and cell surface physical properties in a FLO1 ale yeast. In: Smart KA (ed) Brewing yeast fermentation performance. Blackwell Science, Oxford, pp 152–159Google Scholar
  49. Sampermans S, Mortier J, Soares EV (2005) Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 98:525–531CrossRefGoogle Scholar
  50. Sato M, Maeba H, Watari J, Takashio M (2002) Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeasts. J Biosci Bioeng 93:395–398Google Scholar
  51. Sato M, Watari J, Shinotsuka K (2001) Genetic instability in flocculation of bottom-fermenting yeast. J Am Soc Brew Chem 59:130–134Google Scholar
  52. Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, Kruglyak L (2007) Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One 2:e322CrossRefGoogle Scholar
  53. Smart KA, Whisker S (1996) Effect of serial repitching on the fermentation properties and condition of brewing yeast. J Am Soc Brew Chem 54:41–44Google Scholar
  54. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost M-C, Latgé JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a hyper-variable green beard gene that drives a transition to multicellularity in budding yeast. Cell 135:726–737CrossRefGoogle Scholar
  55. Speers AR, Wan Y-Q, Jin Y-L, Stewart RJ (2006) Effects of fermentation parameters and cell wall properties on yeast flocculation. J Inst Brew 112:246–254Google Scholar
  56. Stratford M (1989) Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeast 5:441–445CrossRefGoogle Scholar
  57. Strauss CJ, Kock JLF, van Wyk PWJ, Lodolo EJ, Pohl CH, Botes PJ (2006) Bioactive oxylipins in Saccharomyces cerevisiae. J Inst Brew 112:66–71Google Scholar
  58. Teunissen AWRH, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013CrossRefGoogle Scholar
  59. Van Mulders SE, Christianen E, Saerens SMG, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190CrossRefGoogle Scholar
  60. Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderinckx J, Thevelein JM, Bauer FF, Pretorius IS (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76Google Scholar
  61. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Environ Microbiol 61:197–205Google Scholar
  62. Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:1–5CrossRefGoogle Scholar
  63. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15CrossRefGoogle Scholar
  64. Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Microbiol Rev 2:533–540CrossRefGoogle Scholar
  65. Yamagishi H, Ogata T (1999) Chromosomal structures of bottom-fermenting yeasts. Syst Appl Microbiol 22:341–353Google Scholar
  66. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68:547–559CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sebastiaan E. Van Mulders
    • 1
  • Maarten Ghequire
    • 1
  • Luk Daenen
    • 1
  • Pieter J. Verbelen
    • 1
  • Kevin J. Verstrepen
    • 2
  • Freddy R. Delvaux
    • 1
  1. 1.Centre for Malting and Brewing Science, Department of Microbial and Molecular Systems, Faculty of Bioscience EngineeringKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of Microbial and Molecular Systems, and VIB Laboratory of Systems Biology, Centre of Microbial and Plant Genetics, CMPG–G & GKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations