Applied Microbiology and Biotechnology

, Volume 88, Issue 3, pp 605–620 | Cite as

Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms

  • Juan Pablo Cárdenas
  • Jorge Valdés
  • Raquel Quatrini
  • Francisco Duarte
  • David S. HolmesEmail author


This mini-review describes the current status of recent genome sequencing projects of extremely acidophilic microorganisms and highlights the most current scientific advances emerging from their analysis. There are now at least 56 draft or completely sequenced genomes of acidophiles including 30 bacteria and 26 archaea. There are also complete sequences for 38 plasmids, 29 viruses, and additional DNA sequence information of acidic environments is available from eight metagenomic projects. A special focus is provided on the genomics of acidophiles from industrial bioleaching operations. It is shown how this initial information provides a rich intellectual resource for microbiologists that has potential to open innovative and efficient research avenues. Examples presented illustrate the use of genomic information to construct preliminary models of metabolism of individual microorganisms. Most importantly, access to multiple genomes allows the prediction of metabolic and genetic interactions between members of the bioleaching microbial community (ecophysiology) and the investigation of major evolutionary trends that shape genome architecture and evolution. Despite these promising beginnings, a major conclusion is that the genome projects help focus attention on the tremendous effort still required to understand the biological principles that support life in extremely acidic environments, including those that might allow engineers to take appropriate action designed to improve the efficiency and rate of bioleaching and to protect the environment.


Acidophiles Genomics Bioinformatics Metabolic reconstruction Ecophysiology 



The authors thank Fondecyt 1090451 and 1100887, UNAB DI-15-06-I, Conicyt Basal CCTE PFB16, Innova 08CM01-03, and Conicyt postgraduate studies grant 2010.


  1. Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Micro 3:489–498CrossRefGoogle Scholar
  2. Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF (2007) Genome dynamics in a natural archaeal population. Proc Natl Acad Sci 104:1883–1888CrossRefGoogle Scholar
  3. Amouric A, Appia-Ayme C, Yarzabal A, Bonnefoy V (2009) Regulation of the iron and sulfur oxidation pathways in the acidophilic Acidithiobacillus ferrooxidans. Adv Mater Res 71–73:163–166CrossRefGoogle Scholar
  4. Andersson AF, Banfield JF (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–1050CrossRefGoogle Scholar
  5. Appia-Ayme C, Quatrini R, Denis Y, Denizot F, Silver S, Roberto F, Veloso F, Valdés J, Pablo Cárdenas J, Esparza M, Orellana O, Jedlicki E, Bonnefoy V, Holmes DS (2006) Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy 83:273–280CrossRefGoogle Scholar
  6. Arsène-Ploetze F, Koechler S, Marchal M, Coppée J-Y, Chandler M, Bonnefoy V, Brochier-Armanet C, Barakat M, Barbe V, Battaglia-Brunet F, Bruneel O, Bryan CG, Cleiss-Arnold J, Cruveiller S, Erhardt M, Heinrich-Salmeron A, Hommais F, Joulian C, Krin E, Lieutaud A, Lièvremont D, Michel C, Muller D, Ortet P, Proux C, Siguier P, Roche D, Rouy Z, Salvignol G, Slyemi D, Talla E, Weiss S, Weissenbach J, Médigue C, Bertin PN (2010) Structure, function, and evolution of the thiomonas spp. Genome. PLoS Genet 6:e1000859CrossRefGoogle Scholar
  7. Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692CrossRefGoogle Scholar
  8. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRefGoogle Scholar
  9. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199CrossRefGoogle Scholar
  10. Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, VerBerkmoes NC, Hettich RL, Banfield JF (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci 107:8806–8811CrossRefGoogle Scholar
  11. Baker-Austin C, Dopson M, Wexler M, Sawers RG, Bond PL (2005) Molecular insight into extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Microbiology 151:2637–2646CrossRefGoogle Scholar
  12. Barreto M, Quatrini R, Bueno S, Arriagada C, Valdes J, Silver S, Jedlicki E, Holmes DS (2003) Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence. Hydrometallurgy 71:97–105CrossRefGoogle Scholar
  13. Barreto M, Gehrke T, Harneit K, Sand W, Jedlicki E, Holmes D (2005a) Unexpected insights into biofilm formation by Acidithiobacillus ferrooxidans revealed by genome analysis and experimental approaches. In: Harrison S, Rawlings D, Peterson J (eds) 16th International Biohydrometallurgy Symposium. Cape Town, South Africa, pp 817–825Google Scholar
  14. Barreto M, Jedlicki E, Holmes DS (2005b) Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71:2902–2909CrossRefGoogle Scholar
  15. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010a) Autotrophic carbon fixation in archaea. Nat Rev Micro 8:447–460CrossRefGoogle Scholar
  16. Berg IA, Ramos-Vera WH, Petri A, Huber H, Fuchs G (2010b) Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology 156:256–269CrossRefGoogle Scholar
  17. Bonnefoy V (2010) Bioinformatics and genomics of iron and sulfur oxidizing acidophiles. In: Barton L, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspectiveGoogle Scholar
  18. Bouchal P, Zdráhal Z, Helánová S, Janiczek O, Hallberg KB, Mandl M (2006) Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry. Proteomics 6:4278–4285CrossRefGoogle Scholar
  19. Brügger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32:179–183CrossRefGoogle Scholar
  20. Cabrejos M-E, Zhao H-L, Guacucano M, Bueno S, Levican G, Garcia E, Jedlicki E, Holmes DS (1999) IST1 insertional inactivation of the resB gene: implications for phenotypic switching in Thiobacillus ferrooxidans. FEMS Microbiol Lett 175:223–229CrossRefGoogle Scholar
  21. Castro M, Ruiz L, Díaz M, Mamani S, Jerez CA, Holmes DS, Guiliani N (2009) C-Di-GMP pathway in biomining bacteria. Adv Mater Res 71–73:223–226CrossRefGoogle Scholar
  22. Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H-P, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999CrossRefGoogle Scholar
  23. Chi A, Valenzuela L, Beard S, Mackey AJ, Shabanowitz J, Hunt DF, Jerez CA (2007) Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans. Mol Cell Proteomics 6:2239–2251CrossRefGoogle Scholar
  24. Cid C, Garcia-Descalzo L, Casado-Lafuente V, Amils R, Aguilera A (2010) Proteomic analysis of the response of an acidophilic strain of Chlamydomonas sp. (Chlorophyta) to natural metal-rich water. Proteomics 10(10):2026–2036CrossRefGoogle Scholar
  25. Clennel A, Johnston B, Rawlings D (1995) Structure and function of Tn5467, a Tn21-like transposon located on the Thiobacillus ferrooxidans broad-host-range plasmid pTF-FC2. Appl Environ Microbiol 61:4223–4229Google Scholar
  26. Clum A, Nolan M, Lang E, Rio TGD, Tice H, Copeland A, Cheng J-F, Lucas S, Chen F, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Göker M, Spring S, Land M, Hauser L, Chang Y-J, Jeffries CD, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P, Lapidus A (2009) Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT). Standards in Genomic SciencesGoogle Scholar
  27. Demergasso CS, Galleguillos F, Soto P, Serón M, Iturriaga V (2010) Microbial succession during a heap bioleaching cycle of low grade copper sulfides. Does this knowledge mean a real input for industrial process design and control? HydrometallurgyGoogle Scholar
  28. Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF (2010a) Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc Natl Acad Sci 107:2383–2390CrossRefGoogle Scholar
  29. Denef VJ, Mueller RS, Banfield JF (2010b) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4:599–610CrossRefGoogle Scholar
  30. Dick G, Andersson A, Baker B, Simmons S, Thomas B, Yelton AP, Banfield J (2009) Community-wide analysis of microbial genome sequence signatures. Genome Biol 10:R85CrossRefGoogle Scholar
  31. Dopson M (2010) Ecology, adaptations, and applications of acidophiles. In: R A (ed) Extremophiles: microbiology and biotechnology. Horizon PressGoogle Scholar
  32. Duarte F, Araya-Secchi R, González W, Perez-Acle T, González-Nilo D, Holmes DS (2009) Protein function in extremely acidic conditions: molecular simulation studies of a predicted aquaporin and a voltage gated potassium channel in Acidithiobacillus ferrooxidans. Adv Mater Res 71–73:211–214CrossRefGoogle Scholar
  33. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, deWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefGoogle Scholar
  34. Esparza M, Bowien B, Jedlicki E, Holmes DS (2009) Gene organization and CO2-responsive expression of four Cbb operons in Acidithiobacillus ferrooxidans. Adv Mater Res 71–73:207–210CrossRefGoogle Scholar
  35. Esparza M, Cardenas JP, Bowien B, Jedlicki E, Holmes DS (2010) CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans. BMC MicrobiologyGoogle Scholar
  36. Farah C, Vera M, Morin D, Haras D, Jerez CA, Guiliani N (2005) Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71:7033–7040CrossRefGoogle Scholar
  37. Filee J, Siguier P, Chandler M (2007) Insertion sequence diversity in archaea. Microbiol Mol Biol Rev 71:121–157CrossRefGoogle Scholar
  38. Fütterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096CrossRefGoogle Scholar
  39. Garrido P, González-Toril E, García-Moyano A, Moreno-Paz M, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850CrossRefGoogle Scholar
  40. Goltsman DSA, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS, Dick GJ, Sun CL, Wheeler KE, Zemla A, Baker BJ, Hauser L, Land M, Shah MB, Thelen MP, Hettich RL, Banfield JF (2009) Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 75:4599–4615CrossRefGoogle Scholar
  41. Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865CrossRefGoogle Scholar
  42. González-Toril E, Aguilera A, Rodriguez N, Fernández-Remolar D, Gómez F, Diaz E, García-Moyano A, Sanz JL, Amils R (2010) Microbial ecology of Río Tinto, a natural extreme acidic environment of biohydrometallurgical interest. Hydrometallurgy (in press)Google Scholar
  43. Hold C, Andrews BA, Asenjo JA (2009) A stoichiometric model of Acidithiobacillus ferrooxidans ATCC 23270 for metabolic flux analysis. Biotechnol Bioeng 102:1448–1459CrossRefGoogle Scholar
  44. Holmes DS, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 281–307CrossRefGoogle Scholar
  45. Holmes DS, Barreto M, Valdes J, Dominguez C, Arriagada C, Silver S, Bueno S, Jedlicki E (2001) Genome sequence of Acidithiobacillus ferrooxidans: metabolic reconstruction, heavy metal resistance and other characteristics. In: Ciminelli V, Garcia O (eds) Biohydrometallurgy: fundamentals, technology and sustainable development. Elsevier, Amsterdam, pp 237–251Google Scholar
  46. Hou S, Makarova K, Saw J, Senin P, Ly B, Zhou Z, Ren Y, Wang J, Galperin M, Omelchenko M, Wolf Y, Yutin N, Koonin E, Stott M, Mountain B, Crowe M, Smirnova A, Dunfield P, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26CrossRefGoogle Scholar
  47. Jerez CA (2008) The use of genomics, proteomics and other OMICS technologies for the global understanding of biomining microorganisms. Hydrometallurgy 94:162–169CrossRefGoogle Scholar
  48. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317CrossRefGoogle Scholar
  49. Johnson DB (2008) Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates. Trans Nonferrous Met Soc China 18:1367–1373CrossRefGoogle Scholar
  50. Kanao T, Matsumoto C, Shiraga K, Yoshida K, Takada J, Kamimura K (2010) Recombinant tetrathionate hydrolase from Acidithiobacillus ferrooxidans requires exposure to acidic conditions for proper folding. FEMS Microbiol Lett 309:43–47Google Scholar
  51. Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, S-i B, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, K-i A, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic Crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140CrossRefGoogle Scholar
  52. Kawashima T, Amano N, Koike H, S-i M, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97:14257–14262CrossRefGoogle Scholar
  53. Kondrat’eva T, Danilevich V, Ageeva S, Karavaiko G (2005) Identification of IS elements in Acidithiobacillus ferrooxidans strains grown in a medium with ferrous iron or adapted to elemental sulfur. Arch Microbiol 183:401–410CrossRefGoogle Scholar
  54. Kondrat’eva T, Danilevich V, Karavaiko G (2008) The primary structure and characteristics of the ISAfe600, an insertion sequence from Acidithiobacillus ferrooxidans strains. Mikrobiologiia 77:524–532Google Scholar
  55. Kotze AA, Tuffin IM, Deane SM, Rawlings DE (2006) Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology 152:3551–3560CrossRefGoogle Scholar
  56. Levican G, Ugalde JA, Ehrenfeld N, Maass A, Parada P (2008) Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9:581CrossRefGoogle Scholar
  57. Levicán G, Katz A, Valdés J, Quatrini R, Holmes DS, Orellana O (2009) A 300 Kb genome segment, including a complete set of tRNA genes, is dispensable for Acidithiobacillus ferrooxidans. Adv Mater Res 71–73:187–190CrossRefGoogle Scholar
  58. Lipps G (2006) Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 10:17–28CrossRefGoogle Scholar
  59. Lo I, Denef VJ, VerBerkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446:537–541CrossRefGoogle Scholar
  60. Mueller RS, Denef VJ, Kalnejais LH, Suttle KB, Thomas BC, Wilmes P, Smith RL, Nordstrom DK, McCleskey RB, Shah MB, VerBerkmoes NC, Hettich RL, Banfield JF (2010) Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol Syst Biol 6Google Scholar
  61. Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109CrossRefGoogle Scholar
  62. Oppon JC, Sarnovsky RJ, Craig NL, Rawlings DE (1998) A Tn7-like transposon is present in the glmUS region of the obligately chemoautolithotrophic bacterium Thiobacillus ferrooxidans. J Bacteriol 180:3007–3012Google Scholar
  63. Osorio H, Martinez V, Nieto P, Holmes D, Quatrini R (2008a) Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 8:203CrossRefGoogle Scholar
  64. Osorio H, Martínez V, Veloso FA, Pedroso I, Valdés J, Jedlicki E, Holmes DS, Quatrini R (2008b) Iron homeostasis strategies in acidophilic iron oxidizers: studies in Acidithiobacillus and Leptospirillum. Hydrometallurgy 94:175–179CrossRefGoogle Scholar
  65. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461:814–818CrossRefGoogle Scholar
  66. Parro V, Moreno-Paz M, González-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464CrossRefGoogle Scholar
  67. Prangishvili D, Albers S-V, Holz I, Arnold HP, Stedman K, Klein T, Singh H, Hiort J, Schweier A, Kristjansson JK, Zillig W (1998) Conjugation in archaea: frequent occurrence of conjugative plasmids in sulfolobus. Plasmid 40:190–202CrossRefGoogle Scholar
  68. Prangishvili D, Stedman K, Zillig W (2001) Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol 9:39–43CrossRefGoogle Scholar
  69. Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the archaea: a unifying view. Nat Rev Micro 4:837–848CrossRefGoogle Scholar
  70. Quatrini R, Veloso F, Jedlicki E, Holmes DS (2004) Bioinformatic analysis of iron uptake in Acidithiobacillus ferrooxidans. In: Tsezos M, Hatzikioseyian A, Remoudaki E (eds) BioHydrometallurgy: a sustainable technology in evolution. National Technical University of Athens, Athens, pp 989–996Google Scholar
  71. Quatrini R, Jedlicki E, Holmes DS (2005a) Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 32:606–614CrossRefGoogle Scholar
  72. Quatrini R, Lefimil C, Holmes DS, Jedlicki E (2005b) The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology 151:2005–2015CrossRefGoogle Scholar
  73. Quatrini R, Lefimil C, Veloso F, Pedroso I (2007a) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35:2153–2166CrossRefGoogle Scholar
  74. Quatrini R, Martinez V, Osorio H, Veloso F, Pedroso I, Valdes J, Jedlicki E, Holmes DS (2007b) Iron homeostasis strategies in acidophilic iron oxidizers: comparative genome analysis. Adv Mater Res 20–21:439–442Google Scholar
  75. Quatrini R, Valdes J, Jedlicki E, Holmes D (2007c) The use of bioinformatics and genome biology to advance our understanding of bioleaching microorganisms. In: Donati E, Sand W (eds) Microbial processing of metal sulfides. Springer, Netherlands, pp 221–239CrossRefGoogle Scholar
  76. Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920CrossRefGoogle Scholar
  77. Rawlings DE (2005) The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 53:137–147CrossRefGoogle Scholar
  78. Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324CrossRefGoogle Scholar
  79. Rawlings DE, Kusano T (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiol Mol Biol Rev 58:39–55Google Scholar
  80. Redder P, Garrett RA (2006) Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 188:4198–4206CrossRefGoogle Scholar
  81. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci 106:8605–8610CrossRefGoogle Scholar
  82. Reysenbach A-L, Hamamura N, Podar M, Griffiths E, Ferreira S, Hochstein R, Heidelberg J, Johnson J, Mead D, Pohorille A, Sarmiento M, Schweighofer K, Seshadri R, Voytek MA (2009) Complete and draft genome sequences of six members of the aquificales. J Bacteriol 191:1992–1993CrossRefGoogle Scholar
  83. Rivas M, Seeger M, Holmes DS, Jedlicki E (2005) A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biological Res 38:283–297Google Scholar
  84. Rivas M, Seeger M, Jedlicki E, Holmes DS (2007) Second acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 73:3225–3231CrossRefGoogle Scholar
  85. Ruepp A, Graml W, Santos-Martinez M-L, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513CrossRefGoogle Scholar
  86. Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy (in press)Google Scholar
  87. Selkov E, Overbeek R, Kogan Y, Chu L, Vonstein V, Holmes D, Silver S, Haselkorn R, Fonstein M (2000) Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans. Proc Natl Acad Sci USA 97:3509–3514CrossRefGoogle Scholar
  88. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC-Y, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840CrossRefGoogle Scholar
  89. Shmaryahu A, Holmes DS (2007) Discovery of small regulatory RNAs in the extremophile acidithiobacillus genus suggests novel genetic regulation. Adv Mater Res 20–21:535–538CrossRefGoogle Scholar
  90. Shmaryahu A, Lefimil C, Jedlicki E, Holmes DS (2009) Small regulatory RNA genes in Acidithiobacillus ferrooxidans: case studies of 6 S RNA and frr. Adv Mater Res 71–73:191–194CrossRefGoogle Scholar
  91. Siezen RJ, Wilson G (2009) Bioleaching genomics. Microb Biotechnol 2:297–303CrossRefGoogle Scholar
  92. Simmons SL, DiBartolo G, Denef VJ, Goltsman DSA, Thelen MP, Banfield JF (2008) Population genomic analysis of strain variation in leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol 6:e177CrossRefGoogle Scholar
  93. Soulère L, Guiliani N, Queneau Y, Jerez C, Doutheau A (2008) Molecular insights into quorum sensing in Acidithiobacillus ferrooxidans bacteria via molecular modelling of the transcriptional regulator AfeR and of the binding mode of long-chain acyl homoserine lactones. J Mol Model 14:599–606CrossRefGoogle Scholar
  94. Tuffin IM, de Groot P, Deane SM, Rawlings DE (2005) An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology 151:3027–3039CrossRefGoogle Scholar
  95. Tuffin IM, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253CrossRefGoogle Scholar
  96. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRefGoogle Scholar
  97. Valdés JH, Holmes DS (2009) Genomic lessons from biomining organisms: case study of the acidithiobacillus genus. Adv Mater Res 71–73:215–218CrossRefGoogle Scholar
  98. Valdés J, Veloso F, Jedlicki E, Holmes D (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4:51CrossRefGoogle Scholar
  99. Valdés J, Pedroso I, Quatrini R, Dodson R, Tettelin H, Blake R, Eisen J, Holmes D (2008a) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:597CrossRefGoogle Scholar
  100. Valdés J, Pedroso I, Quatrini R, Holmes DS (2008b) Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: insights into their metabolism and ecophysiology. Hydrometallurgy 94:180–184CrossRefGoogle Scholar
  101. Valdés J, Quatrini R, Hallberg K, Mangold S, Dopson M, Valenzuela PTD, Holmes DS (2009) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191:5877–5878CrossRefGoogle Scholar
  102. Valdés J, Osorio H, Lefimil C, Duarte F, Jedlicki E, Quatrini R, Holmes DS (2010) Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy (in press)Google Scholar
  103. Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197–211CrossRefGoogle Scholar
  104. van Zyl LJ, Deane SM, Louw L-A, Rawlings DE (2008) Presence of a family of plasmids (29 to 65 Kilobases) with a 26-Kilobase common region in different strains of the sulfur-oxidizing bacterium Acidithiobacillus caldus. Appl Environ Microbiol 74:4300–4308CrossRefGoogle Scholar
  105. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Systems biology: functional analysis of natural microbial consortia using community proteomics. Nat Rev Micro 7:196–205CrossRefGoogle Scholar
  106. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484Google Scholar
  107. Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602CrossRefGoogle Scholar
  108. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056CrossRefGoogle Scholar
  109. Whitaker RJ, Banfield JF (2006) Population genomics in natural microbial communities. Trends Ecol Evol 21:508–516CrossRefGoogle Scholar
  110. Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352CrossRefGoogle Scholar
  111. Yamada T, Hiraoka Y, Das Gupta TK, Chakrabarty AM (2004) Rusticyanin, a bacterial electron transfer protein, causes G1 arrest in J774 and apoptosis in human cancer cells. Cell Cycle 3:1182–1187Google Scholar
  112. Yates JR, Holmes DS (1987) Two families of repeated DNA sequences in Thiobacillus ferrooxidans. J Bacteriol 169:1861–1870Google Scholar
  113. Zhao HL, Holmes DS (1993) Insertion sequence IST1 and associated phenotypic switching in Thiobacillus ferrooxidans. In: A. E. Torma, M. L. Apel, and C. L. Brierley (eds) Biohydrometallurgical technologies, TMS Press, Warrendale, PA, 2:667–671Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Juan Pablo Cárdenas
    • 1
    • 2
  • Jorge Valdés
    • 1
    • 2
    • 3
  • Raquel Quatrini
    • 1
  • Francisco Duarte
    • 1
    • 2
  • David S. Holmes
    • 1
    • 2
    Email author
  1. 1.Center for Bioinformatics and Genome BiologyFundación Ciencia para la VidaSantiagoChile
  2. 2.Depto. de Ciencias Biológicas, Facultad de Ciencias BiológicasUniversidad Andrés BelloSantiagoChile
  3. 3.Computational Genomics Laboratory, Center for Bioinformatics and Molecular SimulationsUniversidad de TalcaSantiagoChile

Personalised recommendations