Applied Microbiology and Biotechnology

, Volume 88, Issue 1, pp 31–39

Yeast flocculation and its biotechnological relevance

  • Florian F. Bauer
  • Patrick Govender
  • Michael C. Bester


Adhesion properties of microorganisms are crucial for many essential biological processes such as sexual reproduction, tissue or substrate invasion, biofilm formation and others. Most, if not all microbial adhesion phenotypes are controlled by factors such as nutrient availability or the presence of pheromones. One particular form of controlled cellular adhesion that occurs in liquid environments is a process of asexual aggregation of cells which is also referred to as flocculation. This process has been the subject of significant scientific and biotechnological interest because of its relevance for many industrial fermentation processes. Specifically adjusted flocculation properties of industrial microorganisms could indeed lead to significant improvements in the processing of biotechnological fermentation products such as foods, biofuels and industrially produced peptides. This review briefly summarises our current scientific knowledge on the regulation of flocculation-related phenotypes, their importance for different biotechnological industries, and possible future applications for microorganisms with improved flocculation properties.


Flocculation Microbial cell adhesion Genetic engineering Industrial bioprocesses Yeast 


  1. Almahmood S, Colin S, Bonaly R (1991) Kluyveromyces-Bulgaricus yeast lectins—isolation of 2 galactose-specific lectin forms from the yeast-cell wall. J Biol Chem 266(31):20882–20887Google Scholar
  2. Bardwell L, Cook JG, Voora D, Baggott DM, Martinez AR, Thorner J (1998) Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 12(18):2887–2898CrossRefGoogle Scholar
  3. Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol Vitic 21:27–51Google Scholar
  4. Bester MC, Pretorius IS, Bauer FF (2006) The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+-dependent flocculation by Flo8p and Mss11p. Curr Genet 49(6):375–383CrossRefGoogle Scholar
  5. Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179(15):4929–4936Google Scholar
  6. Caridi A (2006) Enological functions of parietal yeast mannoproteins. Antonie Leeuwenhoek 89(3–4):417–422CrossRefGoogle Scholar
  7. Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13(15):1477–1489CrossRefGoogle Scholar
  8. Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72(3):495CrossRefGoogle Scholar
  9. Chambers P, Issaka A, Palecek SP (2004) Saccharomyces cerevisiae JEN1 promoter activity is inversely related to concentration of repressing sugar. Appl Environ Microbiol 70(1):8–17CrossRefGoogle Scholar
  10. Chen EH, Grote E, Mohler W, Vignery A (2007) Cell–cell fusion. FEBS Lett 581(11):2181–2193CrossRefGoogle Scholar
  11. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340CrossRefGoogle Scholar
  12. Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309(5):1007–1015CrossRefGoogle Scholar
  13. Cunha AF, Missawa SK, Gomes LH, Reis SF, Pereira GA (2006) Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res 6(2):280–287CrossRefGoogle Scholar
  14. De Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20(9):781–796CrossRefGoogle Scholar
  15. El-Behhari M, Ekome JN, Coulon J, Pucci B, Bonaly R (1998) Comparative extraction procedures for a galactose-specific lectin involved in flocculation of Kluyveromyces lactis strains. Appl Microbiol Biotechnol 49(1):16–23CrossRefGoogle Scholar
  16. El-Behhari M, Gehin G, Coulon J, Bonaly R (2000) Evidence for a lectin in Kluyveromyces sp that is involved in co-flocculation with Schizosaccharomyces pombe. FEMS Microbiol Lett 184(1):41–46CrossRefGoogle Scholar
  17. Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66(5):1276–1289CrossRefGoogle Scholar
  18. Fleming AB, Pennings S (2001) Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J 20(18):5219–5231CrossRefGoogle Scholar
  19. Gagiano M, Bauer FF, Pretorius IS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2(4):433–470Google Scholar
  20. Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999) Divergent regulation of the evolutionarily closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181(20):6497–6508Google Scholar
  21. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361Google Scholar
  22. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68(6):1077–1090CrossRefGoogle Scholar
  23. Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86(3):931–945CrossRefGoogle Scholar
  24. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74(19):6041–6052CrossRefGoogle Scholar
  25. Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci USA 97(22):12158–12163CrossRefGoogle Scholar
  26. Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116(3):405–415CrossRefGoogle Scholar
  27. Hamada K, Terashima H, Arisawa M, Kitada K (1998) Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 273(41):26946–26953CrossRefGoogle Scholar
  28. Ishida-Fujii K, Goto S, Sugiyama H, Takagi Y, Saiki T, Takagi M (1998) Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants. J Gen Appl Microbiol 44(5):347–353CrossRefGoogle Scholar
  29. Jin Y-L, Speers RA (2000) Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 58:108–116Google Scholar
  30. Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci USA 95(2):505–509CrossRefGoogle Scholar
  31. Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54(3):277–286CrossRefGoogle Scholar
  32. Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180(24):6503–6510Google Scholar
  33. Kobayashi O, Yoshimoto H, Sone H (1999) Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Curr Genet 36(5):256–261CrossRefGoogle Scholar
  34. Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58(3):291–296CrossRefGoogle Scholar
  35. Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22(12):3994–4000CrossRefGoogle Scholar
  36. Lahtchev KL, Pesheva M (1991) Construction of hybrid yeasts with increased flocculation for white wine manufacture. J Wine Res 2(3):191–201CrossRefGoogle Scholar
  37. Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA 93(16):8419–8424CrossRefGoogle Scholar
  38. Liu N, Wang D, Wang ZY, He XP, Zhang B (2007) Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Res 7(8):1362–1370CrossRefGoogle Scholar
  39. Liu XW, Sheng GP, Yu HQ (2009) Physicochemical characteristics of microbial granules. Biotechnol Adv 27(6):1061–1070CrossRefGoogle Scholar
  40. Lo WS, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178(24):7144–7151Google Scholar
  41. Machado MD, Janssens S, Soares HMVM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106(6):1792–1804CrossRefGoogle Scholar
  42. Machado MD, Santos MS, Gouveia C, Soares HM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99(7):2107–2115CrossRefGoogle Scholar
  43. Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275(5304):1314–1317CrossRefGoogle Scholar
  44. Masy CL, Henquinet A, Mestdagh MM (1992) Flocculation of Saccharomyces cerevisiae: inhibition by sugars. Can J Microbiol 38:1298–1306CrossRefGoogle Scholar
  45. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68(9):4517–4522CrossRefGoogle Scholar
  46. Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51Google Scholar
  47. Miki BLA, Poon NH, James AP, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene Flo1 in Saccharomyces cerevisiae. J Bacteriol 150(2):878–889Google Scholar
  48. Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63(4):1362–1366Google Scholar
  49. Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18(3):273–278CrossRefGoogle Scholar
  50. Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 33(6):969–998CrossRefGoogle Scholar
  51. Nonklang S, Ano A, Abdel-Banat BM, Saito Y, Hoshida H, Akada R (2009) Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation. Biosci Biotechnol Biochem 73(5):1090–1095CrossRefGoogle Scholar
  52. Octavio LM, Gedeon K, Maheshri N (2009) Epigenetic and Conventional Regulation Is Distributed among Activators of FLO11 Allowing Tuning of Population-Level Heterogeneity in Its Expression. Plos Genetics 5(10):e1000673CrossRefGoogle Scholar
  53. Ogata T, Izumikawa M, Kohno K, Shibata K (2008) Chromosomal location of Lg-FLO1 in bottom-fermenting yeast and the FLO5 locus of industrial yeast. J Appl Microbiol 105(4):1186–1198CrossRefGoogle Scholar
  54. Palecek SP, Parikh AS, Kron SJ (2002) Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148(Pt 4):893–907Google Scholar
  55. Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34(9):577–588CrossRefGoogle Scholar
  56. Park C, Novak JT (2009) Characterization of lectins and bacterial adhesins in activated sludge flocs. Water Environ Res 81(8):755–764CrossRefGoogle Scholar
  57. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35(4):340–355. doi:doi:10.3109/10408410903241436 CrossRefGoogle Scholar
  58. Rando OJ, Verstrepen KJ (2007) Timescales of genetic and epigenetic inheritance. Cell 128(4):655–668CrossRefGoogle Scholar
  59. Remize F, Schorr-Galindo S, Guiraud JP, Dequin S, Blondin B (1998) Construction of a flocculating yeast for fructose production from inulin. Biotechnol Lett 20(3):313–318CrossRefGoogle Scholar
  60. Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291(5505):878–881CrossRefGoogle Scholar
  61. Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM (2010) Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 10(2):134–149CrossRefGoogle Scholar
  62. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18(5):1257–1269CrossRefGoogle Scholar
  63. Saito K, Sato S, Shimoi H, Iefuji H, Tadenuma M (1990) Flocculation mechanism of Hansenula anomala J224. Agric Biol Chem 54(6):1425–1432Google Scholar
  64. Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71(5):2789–2792CrossRefGoogle Scholar
  65. Sampermans S, Mortier J, Soares EV (2005) Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 98(2):525–531CrossRefGoogle Scholar
  66. Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60(4):469–474CrossRefGoogle Scholar
  67. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135(4):726–737CrossRefGoogle Scholar
  68. Soares EV, Seynaeve J (2000) The use of succinic acid, as pH buffer, expands the potentialities of utilisation of a chemically defined medium in Saccharomyces cerevisiae flocculation studies. Biotechnol Lett 22:859–863CrossRefGoogle Scholar
  69. Stratford M (1989) Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeast 5 Spec No: S441-445Google Scholar
  70. Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast 7(6):559–574CrossRefGoogle Scholar
  71. Stratford M, Rose AH (1992) Yeast Flocculation: a new perspective. In: Advances in Microbial Physiology, Volume 33. Academic, pp 1–71Google Scholar
  72. Subramanian SB, Yan S, Tyagi RD, Surampalli RY, Lohani BN (2008) Isolation and molecular identification of extracellular polymeric substances (EPS) producing bacterial strains for sludge settling and dewatering. J Environ Sci Health A Tox Hazard Subst Environ Eng 43(13):1495–1503Google Scholar
  73. Tamaki H (2007) Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae. J Biosci Bioeng 104(4):245–250CrossRefGoogle Scholar
  74. ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, de Groot PWJ (2009) Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 88(2):105–115CrossRefGoogle Scholar
  75. Teunissen AW, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11(11):1001–1013CrossRefGoogle Scholar
  76. Teunissen AW, van den Berg JA, Steensma HY (1993) Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae. Yeast 9(1):1–10CrossRefGoogle Scholar
  77. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP (2008) Adherence mechanisms in human pathogenic fungi. Med Mycol 46(8):749–772CrossRefGoogle Scholar
  78. van Dyk D, Pretorius IS, Bauer FF (2005) Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169(1):91–106Google Scholar
  79. Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9(2):178–190CrossRefGoogle Scholar
  80. Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28(19):1515–1525CrossRefGoogle Scholar
  81. Verran J, Whitehead K (2005) Factors affecting microbial adhesion to stainless steel and other materials used in medical devices. Int J Artif Organs 28(11):1138–1145Google Scholar
  82. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61(3):197–205Google Scholar
  83. Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37(9):986–990CrossRefGoogle Scholar
  84. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60(1):5–15CrossRefGoogle Scholar
  85. Verstrepen KJ, Michiels C, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76Google Scholar
  86. Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2(7):533–540CrossRefGoogle Scholar
  87. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291CrossRefGoogle Scholar
  88. Wang DL, Wang ZY, Liu N, He XP, Zhang BR (2008) Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol Lett 30(11):2013–2018CrossRefGoogle Scholar
  89. Watari J, Nomura M, Sahara H, Koshino S, Keranen S (1994) Construction of flocculent brewer’s yeast by chromosomal integration of the yeast flocculation gene FLO1. J Inst Brew 100:73–77Google Scholar
  90. Watari J, Takata Y, Ogawa M, Murakami J, Koshino S (1991) Breeding of flocculent industrial Saccharomyces cerevisiae strains by introducing the flocculation gene FLO1. Agric Biol Chem 55:1547–1552Google Scholar
  91. Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2(4):e35CrossRefGoogle Scholar
  92. Xu TJ, Zhao XQ, Bai FW (2005) Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. Enzyme Microb Technol 37(6):634–640CrossRefGoogle Scholar
  93. Zhao XQ, Bai FW (2009) Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv 27(6):849–856CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Florian F. Bauer
    • 1
  • Patrick Govender
    • 2
  • Michael C. Bester
    • 1
  1. 1.Institute for Wine Biotechnology, Faculty of AgriSciencesUniversity of StellenboschStellenboschSouth Africa
  2. 2.Department of BiochemistryUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations