Applied Microbiology and Biotechnology

, Volume 88, Issue 1, pp 341–358 | Cite as

Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1

  • Chari Nithya
  • Mansur Farzana Begum
  • Shunmugiah Karutha Pandian
Environmental Biotechnology

Abstract

According to the Centers for Disease Control and Prevention, biofilms cause 65% of infections in developed countries. Pseudomonas aeruginosa biofilm cause life threatening infections in cystic fibrosis infection and they are 1,000 times more tolerant to antibiotic than the planktonic cells. As quorum sensing, hydrophobicity index and extracellular polysaccharide play a crucial role in biofilm formation, extracts from 46 marine bacterial isolates were screened against these factors in P. aeruginosa. Eleven extracts showed antibiofilm activity. Extracts of S6-01 (Bacillus indicus = MTCC 5559) and S6-15 (Bacillus pumilus = MTCC 5560) inhibited the formation of PAO1 biofilm up to 95% in their Biofilm Inhibitory Concentration(BIC) of 50 and 60 μg/ml and 85% and 64% in the subinhibitory concentrations (1/4 and 1/8 of the BIC, respectively). Furthermore, the mature biofilm was disrupted to 70–74% in their BIC. The antibiofilm compound from S6-15 was partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Current study for the first time reveals the antibiofilm and antiquorum-sensing activity of B. pumilus, B. indicus, Bacillus arsenicus, Halobacillus trueperi, Ferrimonas balearica, and Marinobacter hydrocarbonoclasticus from marine habitat.

Keywords

PAO1 biofilm Antibiofilm Marine bacteria B. pumilus Hydrophobicity index Quorum sensing 

References

  1. Annuk H, Hirmo S, Turi E, Mikelsaar M, Arak E, Wadstrom T (1999) Effect on cell surface hydrophobicity and susceptibility of Helicobacter pylori to medicinal plant extracts. FEMS Microbiol Lett 172:41–45CrossRefGoogle Scholar
  2. Babu TG, Nithyanand P, Babu NKC, Pandian SK (2009) Evaluation of cetyltrimethylammonium bromide as a potential short-term preservative agent for stripped goat skin. World J Microbiol Biotechnol 25:901–907CrossRefGoogle Scholar
  3. Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefic G (2006) Therapeutic failures of antibiotics used to treat macrolidesusceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 44:2721–2727CrossRefGoogle Scholar
  4. Brooun A, Liu S, Lewis K (2000) A dose–response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646CrossRefGoogle Scholar
  5. Brown MR, Collier PJ, Gilbert P (1990) Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother 34:1623–1628Google Scholar
  6. Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, 7th edn. Clinical and Laboratory Standards Institute document M7-A7. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  7. Choo JH, Rukayadi Y, Hwang JK (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641Google Scholar
  8. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142Google Scholar
  9. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  10. D'Argenio DA, Calfee MW, Rainey PB, Pesci EC (2002) Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184:6481–6489CrossRefGoogle Scholar
  11. Davies GD, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefGoogle Scholar
  12. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39Google Scholar
  13. Favre-Bonté S, Köhler T, Delden CV (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52:598–604CrossRefGoogle Scholar
  14. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112(9): 1291–1299Google Scholar
  15. Hoiby N, Johansen KH, Moser C, Song Z, Ciofu O, Kharazmi (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35CrossRefGoogle Scholar
  16. Ikeno T, Fukudo K, Ogawa M, Honda M, Tanebe T, Taniguchu H (2007) Small and rough colony Pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol 51:929–938Google Scholar
  17. Jaisi DP, Dong H, Kim J, He Z, Morton JP (2007) Nontronite particle aggregation induced by microbial fe(III) reduction and exopolysaccharide production. Clays Clay Miner 55:96–107CrossRefGoogle Scholar
  18. Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K-M, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger K-E, Darbre T, Reymond J-L (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257CrossRefGoogle Scholar
  19. Kaplan JB (2005) Methods for the treatment and prevention of bacterial biofilms. Expert Opin Ther Pat 15:955–965CrossRefGoogle Scholar
  20. Korenblum E, Sebastian GV, Paiva MM, Coutinho CMLM, Magalhaes FCM, Peyton BM, Seldin L (2008) Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Appl Microbiol Biotechnol 79:97–103CrossRefGoogle Scholar
  21. Li X-Z, Nikaido H, Poole K (1995) Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953Google Scholar
  22. Limsuwan S, Voravuthikunchai SP (2008) Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol Med Microbiol 5:429–436CrossRefGoogle Scholar
  23. Macé C, Seyer D, Chemani C, Cosette P, Di-Martino P, Guery B, Filloux A, Fontaine M, Molle V, Junter G-A, Jouenne T (2008) Identification of biofilm-associated cluster (bac) in Pseudomonas aeruginosa involved in biofilm formation and virulence. PLOS 3:1–10Google Scholar
  24. Marketon MM, Glenn SA, EberhardA GJE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331CrossRefGoogle Scholar
  25. Marshall KC (1994) Microbial adhesion in biotechnological processes. Curr Opin Biotechnol 5:296–301CrossRefGoogle Scholar
  26. Nithya C, Pandian SK (2009) Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production. Microbiol Res. doi:10.1016/j.micres.2009.10.004
  27. Nithya C, Aravindraja C, Pandian SK (2010) Bacillus pumilus of Palk Bay origin inhibits quorum sensing mediated virulence factors in Gram negative bacteria. Res Microbiol 161:293–304CrossRefGoogle Scholar
  28. Nithyanand P, Pandian SK (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Ecol 69:384–394CrossRefGoogle Scholar
  29. Nithyanand P, Thenmozhi R, Rathna J, Pandian SK (2010) Antibiofilm activity of coral associated actinomycetes against different clinical M serotypes of Streptococcus pyogenes. Curr Microbiol 60:454–460CrossRefGoogle Scholar
  30. O'May CY, Sanderson K, Roddam LF, Kirov SM, Reid DW (2009) Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions. J Med Microbiol 58:765–773CrossRefGoogle Scholar
  31. Oh J, Lee NR, Jo W, Jung WK, Lim JS (2009) Effects of substrates on biofilm formation observed by atomic force microscopy. Ultramicroscopy 109:874–880CrossRefGoogle Scholar
  32. Percival SL, Cutting KF (2009) Biofilms: possible strategies for suppression in chronic wounds. Nurs Stand 23:64–68Google Scholar
  33. Poole K (1994) Bacterial multidrug resistance emphasis on efflux mechanisms and Pseudomonas aeruginosa. J Antimicrob Chemother 34:453–456CrossRefGoogle Scholar
  34. Potera C (1999) Forging a link between biofilms and disease. Science 283:1837–1839CrossRefGoogle Scholar
  35. Raffa RB, Iannuzzo JR, Levine DR, Saeid KK, Schwartz RC, Sucic NT, Terleckyj OD, Young JM (2004) Bacterial communication (‘quorum sensing’) via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. J Pharmacol Exp Ther 312:417–423CrossRefGoogle Scholar
  36. Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161CrossRefGoogle Scholar
  37. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814CrossRefGoogle Scholar
  38. Razak FA, Othman RY, Rahim ZH (2006) The effect of Piper beetle and Psidium guajava extracts on the cell-surface hydrophobicity of selected early settlers of dental plaque. J Oral Sci 48:71–75CrossRefGoogle Scholar
  39. Serebryakova EV, Darmov IV, Medvedev NP, Alekseev SM, Rybak SI (2002) Evaluation of the hydrophobicity of bacterial cells by measuring their adherence to chloroform drops. Microbiology 71:202–204CrossRefGoogle Scholar
  40. Swiatlo E, Champlin FR, Holman SC, Wilson WW, Watt JM (2002) Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae. Infect Immun 70:412–415CrossRefGoogle Scholar
  41. Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294CrossRefGoogle Scholar
  42. Toutain-Kidd CM, Kadivar SC, Bramante CT, Bobin SA, Zegans ME (2009) Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted Lipase LipA. Antimicrob Agents Chemother 53:136–145CrossRefGoogle Scholar
  43. Valle J, Re SD, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo J-M (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. PNAS 103:12558–12563CrossRefGoogle Scholar
  44. Vanhaecke E, Remon J-P, Moors M, Raes F, Derudder D, Peteghem AV (1990) Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity. Appl Environ Microbiol 56:788–795Google Scholar
  45. Yao W, YueD I, Yong Z, Bo HY, Yu YB, Yun CS (2007) Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China C Life Sci 50:385–391CrossRefGoogle Scholar
  46. Yildiz FH, Schoolnik GK (1999) Vibrio cholerae 01 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033CrossRefGoogle Scholar
  47. You J, Xue X, Cao L, Lu X, Wang J, Zhang L, Zhou SV (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144CrossRefGoogle Scholar
  48. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (Biosurfactant). Appl Environ Microbiol 58:3276–3282Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Chari Nithya
    • 1
  • Mansur Farzana Begum
    • 1
  • Shunmugiah Karutha Pandian
    • 1
  1. 1.Department of BiotechnologyAlagappa UniversityKaraikudiIndia

Personalised recommendations