Advertisement

Applied Microbiology and Biotechnology

, Volume 88, Issue 3, pp 689–698 | Cite as

Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices

  • Boje Müller
  • Gundula A. Noll
  • Antonia M. Ernst
  • Boris Rüping
  • Sira Groscurth
  • Richard M. Twyman
  • Lawrence M. Kawchuk
  • Dirk Prüfer
Biotechnologically Relevant Enzymes and Proteins

Abstract

Forisomes are mechanoproteins that undergo ATP-independent contraction–expansion cycles triggered by divalent cations, pH changes, and electrical stimuli. Although native forisomes from Medicago truncatula comprise a number of subunits encoded by separate genes, here we show that at least two of those subunits (MtSEO1 and MtSEO4) can assemble into homomeric forisome bodies that are functionally similar to their native, multimeric counterparts. We expressed these subunits in plants and yeast, resulting in the purification of large quantities of artificial forisomes with unique characteristics depending on the expression platform. These artificial forisomes were able to contract and expand in vitro like native forisomes and could respond to electrical stimulation when immobilized between interdigital transducer electrodes. These results indicate that recombinant artificial forisomes with specific characteristics can be prepared in large amounts and used as components of microscale and nanoscale devices.

Keywords

Recombinant forisomes Smart biomaterials Sieve element occlusion Yeast expression 

Notes

Acknowledgments

We gratefully acknowledge the technical assistance of Ann-Christin Müller. This work was partially supported by grants from the Bundesministerium für Forschung und Bildung (0312014B), the Fraunhofer MAVO program “Smart Plastics” and the VolkswagenStiftung, contract no. I/82 075.

Supplementary material

ESM 1

Movie of yeast-derived forisomes changing their conformation due to electrotitration (MPG 982 kb)

References

  1. Alberti S, Gitler AD, Lindquist S (2007) A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24:913–919CrossRefGoogle Scholar
  2. Arsanto JP (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. Am J Bot 69:1200–1212CrossRefGoogle Scholar
  3. Behnke HD (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull 12:143–175Google Scholar
  4. Browne WR, Feringa BL (2006) Making molecular machines work. Nature Nanotech 1:25–35CrossRefGoogle Scholar
  5. D'Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872CrossRefGoogle Scholar
  6. Dohmen RJ, Strasser AW, Höhner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692CrossRefGoogle Scholar
  7. Esau K (1969) The phloem. Borntraeger, StuttgartGoogle Scholar
  8. Esau K (1978) Developmental features of the primary phloem in Phaseolus vulgaris L. Ann Bot 42:1–13Google Scholar
  9. Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838CrossRefGoogle Scholar
  10. Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28:5068–5073CrossRefGoogle Scholar
  11. Huck WTS (2008) Responsive polymers for nanoscale actuation. Materials Today 11:24–32CrossRefGoogle Scholar
  12. Jaeger M, Uhlig K, Clausen-Schaumann H, Duschl C (2008) The structure and functionality of contractile forisome protein aggregates. Biomaterials 29:247–256CrossRefGoogle Scholar
  13. Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400CrossRefGoogle Scholar
  14. Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230CrossRefGoogle Scholar
  15. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603, Erratum in Nature Mater 4:353CrossRefGoogle Scholar
  16. Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Biomaterials 28:5068–5073Google Scholar
  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  18. Lawton DM (1978a) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11CrossRefGoogle Scholar
  19. Lawton DM (1978b) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed in glutaraldehyde. Ann Bot 42:353–361Google Scholar
  20. Mavroidis C, Dubey A (2003) Biomimetics: from pulses to motors. Nat Mater 2:573–574CrossRefGoogle Scholar
  21. Montemagno C, Bachand G (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10:225–231CrossRefGoogle Scholar
  22. Mrazek A (1910) Über geformte eiweißartige Inhaltskörper bei den Leguminosen. Österr Botan Zeitschrift 60:218–230CrossRefGoogle Scholar
  23. Nakayama S, Kretsinger H (1994) Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 23:473–507CrossRefGoogle Scholar
  24. Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390CrossRefGoogle Scholar
  25. Noll GA (2005) Molekularbiologische Charakterisierung der Forisome. Dissertation, Justus-Liebig Universität, Gießen, GermanyGoogle Scholar
  26. Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJE, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294CrossRefGoogle Scholar
  27. Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426CrossRefGoogle Scholar
  28. Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710CrossRefGoogle Scholar
  29. Peters WS, Schnetter R, Knoblauch M (2007) Reversible birefringence suggests a role for molecular self-assembly in forisome contractility. Funct Plant Biol 34:302–306CrossRefGoogle Scholar
  30. Pickard WF, Knoblauch M, Peters WS, Shen AQ (2006) Prospective energy densities in the forisome, a new smart material. Mater Sci Eng C 26:104–112CrossRefGoogle Scholar
  31. Rizo J, Südhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882CrossRefGoogle Scholar
  32. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  33. Schwan S, Fritzsche M, Cismak A, Noll G, Prüfer D, Spohn U, Heilmann A (2006) Micromechanical measurements on chemo-mechanical protein aggregates. Materials Research Society USA, Proceedings of the Fall Meeting, Boston, 27–30.11., 09750-DD-03-10Google Scholar
  34. Schwan S, Fritzsche M, Cismak A, Heilmann A, Spohn U (2007) In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). Biophys Chem 125:444–452CrossRefGoogle Scholar
  35. Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements on P-protein aggregates (forisomes) from Vicia faba plants. Biophys Chem 139:99–105CrossRefGoogle Scholar
  36. Swairjo MA, Seation BA (1994) Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct 23:193–213CrossRefGoogle Scholar
  37. Tuteja N, Umate P, van Bel AJE (2010) Forisomes: calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends Biotechnol 28:102–110CrossRefGoogle Scholar
  38. Uhlig K, Jaeger MS, Lisdat F, Duschl C (2008) Biohybrid microfluidic valve based on forisome protein complexes. J Microelectromech Syst 17:1322–1328CrossRefGoogle Scholar
  39. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956CrossRefGoogle Scholar
  40. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438CrossRefGoogle Scholar
  41. Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388CrossRefGoogle Scholar
  42. Zhang S, Marini DM, Hwang W, Santoso S (2002) Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 6:865–871CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Boje Müller
    • 1
  • Gundula A. Noll
    • 2
  • Antonia M. Ernst
    • 1
  • Boris Rüping
    • 1
  • Sira Groscurth
    • 2
  • Richard M. Twyman
    • 3
  • Lawrence M. Kawchuk
    • 4
  • Dirk Prüfer
    • 1
    • 2
  1. 1.Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachenGermany
  2. 2.Westfälische Wilhelms-Universität Münster, Institut für Biochemie und Biotechnologie der PflanzenMünsterGermany
  3. 3.Department of Biological SciencesUniversity of WarwickCoventryUK
  4. 4.Lethbridge Research CentreAgriculture and Agrifood CanadaLethbridgeCanada

Personalised recommendations