Applied Microbiology and Biotechnology

, Volume 88, Issue 2, pp 485–495 | Cite as

Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56

  • Yogan Khatri
  • Marco Girhard
  • Anna Romankiewicz
  • Michael Ringle
  • Frank Hannemann
  • Vlada B. Urlacher
  • Michael C. Hutter
  • Rita Bernhardt
Biotechnological Products and Process Engineering


Sesquiterpenes are particularly interesting as flavorings and fragrances or as pharmaceuticals. Regio- or stereoselective functionalizations of terpenes are one of the main goals of synthetic organic chemistry, which are possible through radical reactions but are not selective enough to introduce the desired chiral alcohol function into those compounds. Cytochrome P450 monooxygenases are versatile biocatalysts and are capable of performing selective oxidations of organic molecules. We were able to demonstrate that CYP109D1 from Sorangium cellulosum So ce56 functions as a biocatalyst for the highly regioselective hydroxylation of norisoprenoids, α- and β-ionone, which are important aroma compounds of floral scents. The substrates α- and β-ionone were regioselectively hydroxylated to 3-hydroxy-α-ionone and 4-hydroxy-β-ionone, respectively, which was confirmed by 1H NMR and 13C NMR. The results of docking α- and β-ionone into a homology model of CYP109D1 gave a rational explanation for the regio-selectivity of the hydroxylation. Kinetic studies revealed that α- and β-ionone can be hydroxylated with nearly identical V max and K m values. This is the first comprehensive investigation of the regioselective hydroxylation of norisoprenoids by CYP109D1.


Terpenoids Norisoprenoids Cytochromes P450 CYP109D1 Sorangium cellulosum So ce56 



This work was supported by fellowships awarded by Deutscher Akademischer Austausch Dienst (DAAD) to Y. K. and by the Deutsche Bundesstiftung Umwelt (DBU) to M. R. and a grant of the Fonds der Chemischen Industrie to R. B. We are thankful to Wolfgang Reinle for the expression and purification of Adx and AdR. V.U., M.G. and A.R. thank the German Research Foundation (DFG, SFB706) for financial support.

Supplementary material

253_2010_2756_MOESM1_ESM.doc (498 kb)
ESM1 (DOC 497 kb)


  1. Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88:167–171CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201CrossRefGoogle Scholar
  3. Bell SG, Dale A, Rees NH, Wong LL (2010) A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86:163–175CrossRefGoogle Scholar
  4. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145CrossRefGoogle Scholar
  5. Brenna E, Fuganti C, Serra S, Kraft P (2002) Optically active ionones and derivatives: Preparation and olfactory properties. Eur J Org Chem 967–978Google Scholar
  6. Buchecker R, Egli R, Regel-Wild H, Tscharner C, Eugster CH, Uhde G, Ohloff G (1973) Absolute konfiguration der enantiomeren α-cyclogeraniumsäuren, α-cyclogeraniale, α-ionone, ϒ-ionone, α- und ε-Carotine. Helv Chim Acta 56:2548–2563CrossRefGoogle Scholar
  7. Buehler B, Schmid A (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 113:183–210CrossRefGoogle Scholar
  8. Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102: the oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268:3117–3125CrossRefGoogle Scholar
  9. Celik A, Flitsch SL, Turner NJ (2005) Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from actinomycetes. Org Biomol Chem 3:2930–2934CrossRefGoogle Scholar
  10. Colombo MI, Zinczuk J, Ruveda EA (1992) Synthetic routes to forskolin. Tetrahedron 48:963–1037CrossRefGoogle Scholar
  11. de Carvalho CC, da Fonseca MM (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142CrossRefGoogle Scholar
  12. Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425CrossRefGoogle Scholar
  13. Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeast, and plants. Appl Microbiol Biotechnol 61:269–277Google Scholar
  14. Eschenmoser W, Uevelhart P, Eugster CH (1981) Synthesis and structure of the enantiomeric 6-hydroxy-α-ionone and cis- and trans-5, 6-dihydroxy-5, 6-dihydro-β-ionone. Helv Chim Acta 64:2681–2690CrossRefGoogle Scholar
  15. Ewen KM, Hannemann F, Khatri Y, Perlova O, Kappl R, Krug D, Hüttermann J, Müller R, Bernhardt R (2009) Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450. J Biol Chem 284:28590–28598CrossRefGoogle Scholar
  16. Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB (2009) Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb Cell Fact 8:36CrossRefGoogle Scholar
  17. Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher VB (2010) Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol 87:595–607. doi: 10.1007/s00253-010-2472-z CrossRefGoogle Scholar
  18. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  19. Haag A, Eschenmoser W, Eugster CH (1980) Synthese von (−)-(R)-4-hydroxy-β-ionone and (−)-(5R, 6S)-5-Hydroxy-4, 5-dihydro-α-ionone aus (−)-(S)-α-ionone. Helv Chim Acta 63:10–15CrossRefGoogle Scholar
  20. Hannemann F, Virus C, Bernhardt R (2006) Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. J Biotechnol 124:172–181CrossRefGoogle Scholar
  21. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344Google Scholar
  22. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152CrossRefGoogle Scholar
  23. Ishida T, Enomoto H, Nishida R (2008) New attractants for males of the solanaceous fruit fly Bactrocera latifrons. J Chem Ecol 34:1532–1535CrossRefGoogle Scholar
  24. Kakeya H, Sugi T, Ohta H (1991) Biochemical preparation of optically active 4-hydroxy-β-ionone and its transformation of (S)-6-hydroxy-α-ionone. Agric Biol Chem 55:1873–1876Google Scholar
  25. Kovats E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 41:1915–1932CrossRefGoogle Scholar
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) CLUSTALW, version 2. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  27. Larroche C, Creuly C, Gros JB (1995) Fed-batch biotransformation of β-ionone by Aspergillus niger. Appl Microbiol Biotechnol 43:222–227CrossRefGoogle Scholar
  28. Lisurek M, Simgen B, Antes I, Bernhardt R (2008) Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chembiochem 9:1439–1449CrossRefGoogle Scholar
  29. Lochynski S, Kowalska K, Wawrzenczyk C (2002) Synthesis and odour characteristics of new derivatives from the carane system. Flavour Frag J 3:181–186CrossRefGoogle Scholar
  30. Lutz-Wahl S, Fischer P, Schmidt-Dannert C, Wohlleben W, Hauer B, Schmid RD (1998) Stereo- and regioselective hydroxylation of alpha-Ionone by Streptomyces Strains. Appl Environ Microbiol 64:3878–3881Google Scholar
  31. McCudry H (1989) Fruiting gliding bacteria. In: Holt J (ed) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 2139–2143Google Scholar
  32. McLean KJ, Carroll P, Lewis DG, Dunford AJ, Seward HE, Neeli R, Cheesman MR, Marsollier L, Douglas P, Smith WE, Rosenkrands I, Cole ST, Leys D, Parish T, Munro AW (2008) Characterization of active site structure in CYP121. A cytochrome P450 essential for viability of Mycobacterium tuberculosis H37Rv. J Biol Chem 283:33406–33416CrossRefGoogle Scholar
  33. Menche D, Arikan F, Perlova O, Horstmann N, Ahlbrecht W, Wenzel SC, Jansen R, Irschik H, Müllar R (2008) Stereochemical determination and complex biosynthetic assembly of ethangien, a highly potent RNA-polymerase inhibitor from the myxobacterium Sorangium cellulosum. J Am Chem Soc 130:14234–14243CrossRefGoogle Scholar
  34. Mikami Y, Fukunaga Y, Arita M, Kisaki T (1981) Microbial transformation of β-ionone and β-methylionone. Appl Environ Microbiol 41:610–617Google Scholar
  35. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  36. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone Coexpression Plasmids:Differential and synergistic roles of DnaK–DnaJ–GrpE and GroEL–GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699Google Scholar
  37. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378Google Scholar
  38. Perlova O, Gerth K, Kaiser O, Hans A, Müller R (2006) Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J Biotechnol 121:174–191CrossRefGoogle Scholar
  39. Pybus DH, Sell CS (1999) The chemistry of fragrances. The Royal Society of Chemistry, LondonCrossRefGoogle Scholar
  40. Reichenbach H (2004) The Myxococcales. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. Springer, New York, pp 1059–1143Google Scholar
  41. Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395CrossRefGoogle Scholar
  42. Sagara Y, Wada A, Takata Y, Waterman MR, Sekimizu K, Horiuchi T (1993) Direct expression of adrenodoxin reductase in Escherichia coli and the functional characterization. Biol Pharm Bull 16:627–630Google Scholar
  43. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61Google Scholar
  44. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ et al (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotech 25:1281–1289CrossRefGoogle Scholar
  45. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385CrossRefGoogle Scholar
  46. Stanislaw L, Kowaiska K, Wawrzwnczyk C (2002) Synthesis and odour characteristics of new derivatives from the carane system. Flavour Frag J 17:181–186CrossRefGoogle Scholar
  47. Uhlmann H, Kraft R, Bernhardt R (1994) C-terminal region of adrenodoxin affects its structural integrity and determines differences in its electron transfer function to cytochrome P-450. J Biol Chem 269:22557–22564Google Scholar
  48. Urlacher VB, Schmid RD (2002) Biotransformations using prokaryotic P450 monooxygenases. Curr Opin Biotechnol 13:557–564CrossRefGoogle Scholar
  49. Urlacher VB, Makhsumkhanov A, Schmid RD (2006) Biotransformation of beta-ionone by engineered cytochrome P450 BM-3. Appl Microbiol Biotechnol 70:53–59CrossRefGoogle Scholar
  50. Virus C, Bernhardt R (2008) Molecular evolution of a steroid hydroxylating cytochrome P450 using a versatile steroid detection system for screening. Lipids 43:1133–1141CrossRefGoogle Scholar
  51. Wenzel SC, Müller R (2007) Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat Prod Rep 24:1211–1224CrossRefGoogle Scholar
  52. Wenzel SC, Müller R (2009) Myxobacteria—‘microbial factories’ for the production of bioactive secondary metabolites. Mol Biosyst 5:567–574CrossRefGoogle Scholar
  53. Williams JW, Morrison JF (1979) The kinetics of reversible tight-binding inhibition. Methods Enzymol 63:437–467CrossRefGoogle Scholar
  54. Winterhalter P, Rouseff RL (2002) Carotenoid-derived aroma compounds. Am Chem Soc, WashingtonGoogle Scholar
  55. Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990CrossRefGoogle Scholar
  56. Yamazaki Y, Hayashi Y, Arita M, Hieda T, Mikami Y (1988) Microbial conversionof α-ionone, α-methylionone, and α-isomethylionone. Appl Environ Microbiol 54:2354–2360Google Scholar
  57. Zöllner A, Kagawa N, Waterman MR, Nonaka Y, Takio K, Shiro Y, Hannemann F, Bernhardt R (2008) Purification and functional characterization of human 11-beta hydroxylase expressed in Escherichia coli. FEBS J 275:799–810CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yogan Khatri
    • 1
  • Marco Girhard
    • 2
  • Anna Romankiewicz
    • 3
  • Michael Ringle
    • 1
  • Frank Hannemann
    • 1
  • Vlada B. Urlacher
    • 2
  • Michael C. Hutter
    • 4
  • Rita Bernhardt
    • 1
    • 5
  1. 1.Department of BiochemistrySaarland UniversitySaarbrückenGermany
  2. 2.Institute of BiochemistryHeinrich-Heine-Universitaet DüsseldorfDüsseldorfGermany
  3. 3.Institute of Technical BiochemistryUniversitaet StuttgartStuttgartGermany
  4. 4.Center for BioinformaticsSaarland UniversitySaarbrückenGermany
  5. 5.Institut für BiochemieUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations