Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1281–1289 | Cite as

Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives

  • Fei Tao
  • Yinan Zhang
  • Cuiqing Ma
  • Ping Xu


N-Acetyl-d-neuraminic acid (Neu5Ac) and its derivates are a very important group of biomolecules because these sugars occupy the terminal positions in numerous macromolecules, such as the glycans of glycoproteins, and are involved in many biological and pathological phenomena. The synthesis and applications of Neu5Ac are attracting much interest due to the potential applications of this compound in the pharmaceutical industry, such as in the synthesis of the anti-flu drug zanamivir. In this review article, we discuss existing knowledge on the biotechnological production and applications of Neu5Ac and also propose some guidelines for future studies.


N-Acetyl-d-neuraminic acid Sialic acid Biocatalysis Application 



The study was partly supported by grants from the State Major Basic Research Development Program (China; Numbers: 2007CB714303 and 2007CB707803). The authors would also like to acknowledge partial financial support from National Natural Science Foundation of China.


  1. Bülow L, Ljungcrantz P, Mosbach K (1985) Preparation of a soluble bifunctional enzyme by gene fusion. Nat Biotechnol 3:821–823CrossRefGoogle Scholar
  2. Blayer S, Woodley JM, Dawson MJ, Lilly MD (1999) Alkaline biocatalysis for the direct synthesis of N-acetyl-d-neuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc). Biotechnol Bioeng 66:131–136CrossRefGoogle Scholar
  3. Chen RR (2007) Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 74:730–738CrossRefGoogle Scholar
  4. Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176CrossRefGoogle Scholar
  5. Comb DG, Roseman S (1960) The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J Biol Chem 235:2529–2537Google Scholar
  6. Cornforth JW, Firth ME, Gottschalk A (1958) The synthesis of N-acetylneuraminic acid. Biochem J 68:57–61Google Scholar
  7. Cretich M, Chiari M, Carrea G (2001) Stereoselective synthesis of (S)-(+)-naproxen catalyzed by carboxyl esterase in a multicompartment electrolyzer. J Biochem Biophys Meth 48:247–256CrossRefGoogle Scholar
  8. Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, van den Berg TK, van der Merwe PA, Watt SM, Varki A (1998) Siglecs: a family of sialic-acid binding lectins. Glycobiology 8:v–viGoogle Scholar
  9. Cross AS, Wright DG, Gomatos P, Stamatos N (1997) Use of sialic acid or antibodies to sialidase as anti-infectious agents and anti-inflammatory agents Patent US: 5631283Google Scholar
  10. Danishefsky SJ, DeNinno MP, Chen SH (1988) Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-d-manno-2-octulosonic acid: a new and atereospecific approach to sialo and 3-deoxy-d-manno-2-octulosonic acid conjugates. J Am Chem Soc 110:3929–3940CrossRefGoogle Scholar
  11. Deninno MP (1991) The synthesis and glycosidation of N-acetylneuraminic acid. Synthesis 8:583–593CrossRefGoogle Scholar
  12. Dreitlein WB, Maratos J, Brocavich J (2001) Zanamivir and oseltamivir: two new options for the treatment and prevention of influenza. Clin Ther 23:327–355CrossRefGoogle Scholar
  13. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759CrossRefGoogle Scholar
  14. Funegard U, Franzen L, Ericson T, Henriksson R (1994) Parotid saliva composition during and after irradiation of head and neck cancer. Eur J Cancer B Oral Oncol 30B:230–233CrossRefGoogle Scholar
  15. Furuhata K (2004) Chemistry of N-acetylneuraminic acid (Neu5Ac). Trends Glycosci Glycotechnol 16:143–169Google Scholar
  16. Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols. Angew Chem 45:5677–5681CrossRefGoogle Scholar
  17. Holland HL (1998) Microbial transformations. Curr Opin Chem Biol 2:77–84CrossRefGoogle Scholar
  18. Hsu CC, Hong Z, Wada M, Franke D, Wong CH (2005) Directed evolution of d-sialic acid aldolase to l-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase. Proc Natl Acad Sci USA 102:9122–9126CrossRefGoogle Scholar
  19. Hu S, Chen J, Yang Z, Shao L, Bai H, Luo J, Jiang W, Yang Y (2010) Coupled bioconversion for preparation of N-acetyl-d: -neuraminic acid using immobilized N-acetyl-d: -glucosamine-2-epimerase and N-acetyl-d: -neuraminic acid lyase. Appl Microbiol Biotechnol 85:1383–1391CrossRefGoogle Scholar
  20. Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9:174–180CrossRefGoogle Scholar
  21. Joerger AC, Mayer S, Fersht AR (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci USA 100:5694–5699CrossRefGoogle Scholar
  22. Juneja LR, Koketsu M, Nishimoto K, Kim M, Yamamoto T, Itoh T (1991) Large-scale preparation of sialic acid from chalaza and egg-yolk membrane. Carbohydr Res 214:179–186CrossRefGoogle Scholar
  23. Kawai N, Ikematsu H, Iwaki N, Maeda T, Kawashima T, Hirotsu N, Kashiwagi S (2009) Comparison of the effectiveness of zanamivir and oseltamivir against influenza A/H1N1, A/H3N2, and B. Clin Infect Dis 48:996–997CrossRefGoogle Scholar
  24. Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137–240CrossRefGoogle Scholar
  25. Kelm S, Schauer R, Crocker PR (1996) The sialoadhesins—a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J 13:913–926CrossRefGoogle Scholar
  26. Kijima-Suda I, Miyamoto Y, Toyoshima S, Itoh M, Osawa T (1986) Inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid:nucleoside conjugate having sialyltransferase inhibiting activity. Cancer Res 46:858–862Google Scholar
  27. Kim MJ, Hennen WJ, Sweers HM, Wong CH (1988) Enzymes in carbohydrate synthesis—N-acetylneuraminic acid aldolase catalyzed-reactions and preparation of N-acetyl-2-deoxy-d-neuraminic acid-derivatives. J Am Chem Soc 110:6481–6486CrossRefGoogle Scholar
  28. Koketsu M, Juneja LR, Kawanami H, Kim M, Yamamoto T (1992) Preparation of N-acetylneuraminic acid from delipidated egg yolk. Glycoconj J 9:70–74CrossRefGoogle Scholar
  29. Kragl U, Gygax D, Ghisalba O, Wandrey C (1991) Enzymatic 2-step synthesis of N-acetylneuraminic acid in the enzyme membrane reactor. Angew Chem 30:827–828CrossRefGoogle Scholar
  30. Lee JO, Yi JK, Lee SG, Takahashi S, Kim BG (2004) Production of N-acetylneuraminic acid from N-acetylglucosamine and pyruvate using recombinant human renin binding protein and sialic acid aldolase in one pot. Enzyme Microb Technol 35:121–125CrossRefGoogle Scholar
  31. Lee YC, Chien HC, Hsu WH (2007) Production of N-acetyl-d-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase. J Biotechnol 129:453–460CrossRefGoogle Scholar
  32. Lin CH, Sugai T, Halcomb RL, Ichikawa Y, Wong CH (1992) Unusual stereoselectivity in sialic acid aldolase-catalyzed aldol condensations: synthesis of both enantiomers of high-carbon monosaccharides. J Am Chem Soc 114:10138–10145CrossRefGoogle Scholar
  33. Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS, Piercey JE, Ramlakhan D, Todd M, Dawson MJ (1997) An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb Technol 20:393–400CrossRefGoogle Scholar
  34. Maru I, Ohnishi J, Ohta Y, Tsukada Y (1998) Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-d-glucosamine and pyruvate using N-acyl-d-glucosamine 2-epimerase and N-acetylneuraminate lyase. Carbohydr Res 306:575–578CrossRefGoogle Scholar
  35. Maru I, Ohnishi J, Ohta Y, Tsukada Y (2002) Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acylglucosamine 2-epimerase. J Biosci Bioeng 93:258–265CrossRefGoogle Scholar
  36. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:243–255CrossRefGoogle Scholar
  37. Moscona A (2005) Neuraminidase inhibitors for influenza. New Engl J Med 353:1363–1373CrossRefGoogle Scholar
  38. Ofek I, Hasty DL, Sharon N (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38:181–191CrossRefGoogle Scholar
  39. Ofek I, Sharon N (2002) A bright future for anti-adhesion therapy of infectious diseases. Cell Mol Life Sci 59:1666–1667CrossRefGoogle Scholar
  40. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83CrossRefGoogle Scholar
  41. Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9Google Scholar
  42. Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S, Paulson JC (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-lex. Science 250:1130–1132CrossRefGoogle Scholar
  43. Plumbridge J, Vimr E (1999) Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 181:47–54Google Scholar
  44. Rodriguez-Aparicio LB, Ferrero MA, Reglero A (1995) N-acetyl-d-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-d-mannosamine and pyruvate. Biochem J 308(Pt 2):501–505Google Scholar
  45. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499CrossRefGoogle Scholar
  46. Schauer R, Shukla AK, Schröder C, Müller E (1984) The anti-recognition function of sialic acids: studies with erythrocytes and macrophages. Pure Appl Chem 56:907–921CrossRefGoogle Scholar
  47. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268CrossRefGoogle Scholar
  48. Schmidt RR, Behrendt M, Toepfer A (1990) Nitriles as solvents in glycosylation reactions: highly selective β-glycoside synthesis. Synlett 11:694–696CrossRefGoogle Scholar
  49. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697CrossRefGoogle Scholar
  50. Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760:527–537Google Scholar
  51. Sharon N, Ofek I (2000) Safe as mother's milk: carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj J 17:659–664CrossRefGoogle Scholar
  52. Shimatani M, Uchida Y, Matsuno I, Oyoshi M, Ishiyama Y (1993) Process for manufacturing sialic acids-containing composition. Patent US :5270462Google Scholar
  53. Simon PM, Goode PL, Mobasseri A, Zopf D (1997) Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 65:750–757Google Scholar
  54. Soundararajan V, Tharakaraman K, Raman R, Raguram S, Shriver Z, Sasisekharan V, Sasisekharan R (2009) Extrapolating from sequence—the 2009 H1N1 ‘swine’ influenza virus. Nat Biotechnol 27:510–513CrossRefGoogle Scholar
  55. Spivak CT, Roseman S (1959) Preparation of N-acetyl-d-mannosamine (2-acetamido-2-deoxy-d-mannose) and d-mannosamine hydrochloride (2-amino-2-deoxy-d-mannose). J Am Chem Soc 81:2403–2404CrossRefGoogle Scholar
  56. Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556CrossRefGoogle Scholar
  57. Sugai T, Kuboki A, Hiramatsu S, Okazaki H, Ohta H (1995) Improved enzymatic procedure for a preparative-scale synthesis of sialic acid and KDN. Bull Chem Soc Jpn 68:3581–3589CrossRefGoogle Scholar
  58. Tabata K, Koizumi S, Endo T, Ozaki A (2002) Production of N-acetyl-d-neuraminic acid by coupling bacteria expressing N-acetyl-d-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid synthetase. Enzyme Microb Technol 30:327–333CrossRefGoogle Scholar
  59. Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54:1330–1349CrossRefGoogle Scholar
  60. Tsuji S, Yamashita T, Tanaka M, Nagai Y (1988) Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem 50:414–423CrossRefGoogle Scholar
  61. Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87:851–857CrossRefGoogle Scholar
  62. von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974CrossRefGoogle Scholar
  63. von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423CrossRefGoogle Scholar
  64. Wang TH, Chen YY, Pan HH, Wang FP, Cheng CH, Lee WC (2009) Production of N-acetyl-d-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins. BMC Biotechnol 9:63CrossRefGoogle Scholar
  65. Wieser RJ, Baumann CE, Oesch F (1995) Cell-contact mediated modulation of the sialylation of contactinhibin. Glycoconj J 12:672–679CrossRefGoogle Scholar
  66. Xiao Z, Lv C, Gao C, Qin J, Ma C, Liu Z, Liu P, Li L, Xu P (2010) A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS ONE 5:e8860CrossRefGoogle Scholar
  67. Xu P, Qiu JH, Zhang YN, Chen J, Wang PG, Yan B, Song J, Xi RM, Deng ZX, Ma CQ (2007) Efficient whole-cell biocatalytic synthesis of N-acetyl-d-neuraminic acid. Adv Synth Catal 349:1614–1618CrossRefGoogle Scholar
  68. Yu RK, Ledeen R (1969) Configuration of the ketosidic bond of sialic acid. J Biol Chem 244:1306–1313Google Scholar
  69. Zhang Y, Tao F, Du M, Ma C, Qiu J, Gu L, He X, Xu P (2010) An efficient method for N-acetyl-d-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Appl Microbiol Biotechnol 86:481–489CrossRefGoogle Scholar
  70. Zimmermann V, Hennemann HG, Daussmann T, Kragl U (2007) Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-d-glucosamine—new strategies for the optimisation of neuraminic acid synthesis. Appl Microbiol Biotechnol 76:597–605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.MOE Key Laboratory of Microbial Metabolism and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Microbial TechnologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations