Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1291–1301 | Cite as

Developments and perspectives of photobioreactors for biofuel production

  • Michael Morweiser
  • Olaf Kruse
  • Ben Hankamer
  • Clemens Posten
Mini-Review

Abstract

The production of biofuels from microalgae requires efficient photobioreactors in order to meet the tight constraints of energy efficiency and economic profitability. Current cultivation systems are designed for high-value products rather than for mass production of cheap energy carriers. Future bioreactors will imply innovative solutions in terms of energy efficiency, light and gas transfer or attainable biomass concentration to lower the energy demand and cut down production costs. A new generation of highly developed reactor designs demonstrates the enormous potential of photobioreactors. However, a net energy production with microalgae remains challenging. Therefore, it is essential to review all aspects and production steps for optimization potential. This includes a custom process design according to production organism, desired product and production site. Moreover, the potential of microalgae to synthesize valuable products additionally to the energetic use can be integrated into a production concept as well as waste streams for carbon supply or temperature control.

Keywords

Biofuels Light transfer Mass transfer Microalgae Photobioreactor Renewable energy 

References

  1. Acien Fernandez FG, Sevilla JMF, Perez JAS, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732CrossRefGoogle Scholar
  2. Buehner MR, Young PM, Willson B, Rausen D, Schoonover R, Babbitt G, Bunch S (2009) Microalgae growth modeling and control for a vertical flat panel photobioreactor. Am Control Conf 1-9:2301–2306CrossRefGoogle Scholar
  3. Camacho Rubio F, Miron AS, Garcia MCC, Camacho FG, Molina Grima E, Chisti Y (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59(20):4369–4376CrossRefGoogle Scholar
  4. Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943CrossRefGoogle Scholar
  5. Chisti Y (2008a) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRefGoogle Scholar
  6. Chisti Y (2008b) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352CrossRefGoogle Scholar
  7. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819CrossRefGoogle Scholar
  8. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94CrossRefGoogle Scholar
  9. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412CrossRefGoogle Scholar
  10. Earthrise-Nutritionals (2009) Retrieved 02/24, 2010, from http://www.earthrise.com/farm.html
  11. Falkowski PG, Owens TG (1978) Effects of light-intensity on photosynthesis and dark respiration in 6 species of marine-phytoplankton. Mar Biol 45(4):289–295CrossRefGoogle Scholar
  12. Fischer K, Rahn R (2004) Hefe und Hefeextrakt. Lebensmitteltechnologie: biotechnologische, chemische, mechanische und thermische Verfahren der Lebensmittelverarbeitung. R. Heiss, Springer-Verlag, Berlin Heidelberg, pp 418–429Google Scholar
  13. Fleck-Schneider P (2004) Prophyridium purpureum: Strukturierte Modellbildung und experimentelle Validierung der Stoffwechselreaktion auf Hell-Dunkel-Zyklen. Faculty of Chemical Engineering. Karlsruhe, Universität Fridericiana. PhDGoogle Scholar
  14. Gaffron H, Rubin J (1942) Fermantative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefGoogle Scholar
  15. Gallert C, Winter J (2002) Solid and liquid residues as raw materials for biotechnology. Naturwissenschaften 89:483–496CrossRefGoogle Scholar
  16. Gasljevic K, Hall KA, Oakes S, Chapman DJ, Matthys EF (2009) Increased production of extracellular polysaccharide by Porphyridium cruentum immobilized in foam sheets. Eng Life Sci 9(6):479–489CrossRefGoogle Scholar
  17. Geresh S, Malis SA (1991) The extracellular polysaccharides of the red microalgae—chemistry and rheology. Bioresour Technol 38(2–3):195–201CrossRefGoogle Scholar
  18. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726CrossRefGoogle Scholar
  19. Hall DO, Acien Fernandez FG, Guerrero EC, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73CrossRefGoogle Scholar
  20. Halldal P, French CS (1958) Algal growth in crossed gradients of light intensity and temperature. Plant Physiol 33(4):249–252CrossRefGoogle Scholar
  21. Harris GP, Piccinin BB (1983) Phosphorus limitation and carbon metabolism in a unicellular alga—interaction between growth-rate and the measurement of net and gross photosynthesis. J Phycol 19(2):185–192CrossRefGoogle Scholar
  22. Holland L, Siddall G (1958) Heat-reflecting windows using gold and bismuth oxide films. Br J Appl Phys 9(9):359–361CrossRefGoogle Scholar
  23. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRefGoogle Scholar
  24. IEA (2009) Key world energy statistics 2009Google Scholar
  25. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413CrossRefGoogle Scholar
  26. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H-2 production in engineered green algal cells. J Biol Chem 280(40):34170–34177CrossRefGoogle Scholar
  27. Langner U, Jakob T, Stehfest K, Wilhelm C (2009) An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environ 32(3):250–258CrossRefGoogle Scholar
  28. Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481CrossRefGoogle Scholar
  29. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) Co2 fixation from the flue-gas on coal-fired thermal power-plant by microalgae. Energy Convers Manage 36(6–9):717–720CrossRefGoogle Scholar
  30. Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–135CrossRefGoogle Scholar
  31. Merchuk JC, Rosenblat Y, Berzin I (2007) Fluid flow and mass transfer in a counter-current gas-liquid inclined tubes photo-bioreactor. Chem Eng Sci 62(24):7414–7425CrossRefGoogle Scholar
  32. Molina Grima E, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515CrossRefGoogle Scholar
  33. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814CrossRefGoogle Scholar
  34. Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of Sox and Nox. Appl Biochem Biotechnol 28–9:877–886CrossRefGoogle Scholar
  35. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon-dioxide fixation by microalgae photosynthesis using actual flue-gas discharged from a boiler. Appl Biochem Biotechnol 39:643–653CrossRefGoogle Scholar
  36. Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285CrossRefGoogle Scholar
  37. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177CrossRefGoogle Scholar
  38. Proviron (2010) “Proviron.” from http://www.proviron.com/algae/
  39. Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350CrossRefGoogle Scholar
  40. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefGoogle Scholar
  41. Rossignol N, Vandanjon L, Jaouen P, Quemeneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultra-filtration. Aquacultural Eng 20(3):191–208CrossRefGoogle Scholar
  42. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy ResGoogle Scholar
  43. Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1–3):136–147CrossRefGoogle Scholar
  44. Solix-Biofuels (2009) 2010, from http://www.solixbiofuels.com/content/faq
  45. Sorokin C, Krauss RW (1958) The effects of light intensity on the growth rates of green algae. Plant Physiol 33(2):109–113CrossRefGoogle Scholar
  46. Steiner U (2008) Biofuel’s cost explosion necessitates adaption of process concepts European White Biotechnology Summit. Frankurt, GermanyGoogle Scholar
  47. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(2):126–128CrossRefGoogle Scholar
  48. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162Google Scholar
  49. Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. Università degli Studi di FirenzeGoogle Scholar
  50. Weyer KM, Bush DR, Darzins A, Willson B (2010) Theoretical maximum algal oil production. Bioenergy Res 3(2):204–213CrossRefGoogle Scholar
  51. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74CrossRefGoogle Scholar
  52. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159CrossRefGoogle Scholar
  53. Zijffers JWF, Janssen M, Tramper J, Wijffels RH (2008) Design process of an area-efficient photobioreactor. Mar Biotechnol 10(4):404–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michael Morweiser
    • 1
  • Olaf Kruse
    • 2
  • Ben Hankamer
    • 3
  • Clemens Posten
    • 1
  1. 1.Division of Bioprocess Engineering, Institute of Engineering in Life SciencesKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Biology, AlgaeBioTech GroupUniversity of BielefeldBielefeldGermany
  3. 3.Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia

Personalised recommendations