Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1255–1270 | Cite as

Expression and export: recombinant protein production systems for Aspergillus

  • André Fleißner
  • Petra Dersch


Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.


Aspergillus niger Gene expression Inducible promoters Cloning vectors Protein production Secretion systems 



The authors thank Habib Driouch, Andreas Roth, and Dr. Christoph Wittmann for helpful discussion and data of A. niger cultivation with microparticles and Dr. Fabio Pisano for critical reading of the manuscript. The writing of this review was supported by a grant (SFB578, project A1) of the Deutsche Forschungsgemeinschaft.


  1. Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387Google Scholar
  2. Andersen MR, Nielsen J (2009) Current status of systems biology in Aspergilli. Fungal Genet Biol 46(Suppl 1):S180–190Google Scholar
  3. Archer DB, Jeenes DJ, MacKenzie DA, Brightwell G, Lambert N, Lowe G, Radford SE, Dobson CM (1990) Hen egg white lysozyme expressed in, and secreted from, Aspergillus niger is correctly processed and folded. Biotechnology 8:741–745Google Scholar
  4. Barcellos FG, Fungaro MH, Furlaneto MC, Lejeune B, Pizzirani-Kleiner AA, de Azevedo JL (1998) Genetic analysis of Aspergillus nidulans unstable transformants obtained by the biolistic process. Can J Microbiol 44:1137–1141Google Scholar
  5. Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci AP (1999) Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 65:638–648Google Scholar
  6. Bohlin C, Jonsson LJ, Roth R, van Zyl WH (2006) Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Appl Biochem Biotechnol 129–132:195–214Google Scholar
  7. Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15Google Scholar
  8. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145Google Scholar
  9. Carrez D, Janssens W, Degrave P, van den Hondel CA, Kinghorn JR, Fiers W, Contreras R (1990) Heterologous gene expression by filamentous fungi: secretion of human interleukin-6 by Aspergillus nidulans. Gene 94:147–154Google Scholar
  10. Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023Google Scholar
  11. Conesa A, Jeenes D, Archer DB, van den Hondel CA, Punt PJ (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68:846–851Google Scholar
  12. Contreras R, Carrez D, Kinghorn JR, van den Hondel CA, Fiers W (1991) Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Biotechnology (N Y) 9:378–381Google Scholar
  13. Cullen D, Gray GL, Wilson LJ, Hayenga K, Lamsa M, Rey MW, Norton S, Berka RM (1987a) Controlled expression and secretion of the bovine chymosin in Aspergillus nidulans. Bio/Technology 5:369–376Google Scholar
  14. Cullen D, Leong SA, Wilson LJ, Henner DJ (1987b) Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene 57:21–26Google Scholar
  15. David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270:4243–4253Google Scholar
  16. Davies RW (1991) Molecular biology of a high-level recombinant protein production system in Aspergillus. In: Leong SA, Berka RM (eds) Molecular industrial mocology systems and applications for filamentous fungi. Morris-Bekker, New YorkGoogle Scholar
  17. Davies RW (1994) Heterologous gene expression and protein secretion in Aspergillus. Prog Ind Microbiol 29:527–560Google Scholar
  18. de Bekker C, Wiebenga A, Aguilar G, Wosten HA (2009) An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J Microbiol Meth 76:305–306Google Scholar
  19. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842Google Scholar
  20. De Lucas JR, Gregory S, Turner G (1994) Analysis of the regulation of the Aspergillus nidulans acuD gene, encoding isocitrate lyase, by construction of a hybrid promoter. Mol Gen Genet 243:654–659Google Scholar
  21. de Vries RP, Burgers K, van de Vondervoort PJ, Frisvad JC, Samson RA, Visser J (2004) A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl Environ Microbiol 70:3954–3959Google Scholar
  22. DeFazio LG, Stansel RM, Griffith JD, Chu G (2002) Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 21:3192–3200Google Scholar
  23. Driouch H, Sommer B, Wittmann C (2009) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105:1058–68Google Scholar
  24. Driouch HB, Roth A, Dersch P, Wittmann C (2010) Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger Appl. Microbiol. Biotechnol. (in press).Google Scholar
  25. Dunn-Coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson LJ, Kodama KH, Baliu EF, Bower B, Lamsa M, Heinsohn H (1991) Commercial levels of chymosin production by Aspergillus. Biotechnology (N Y) 9:976–981Google Scholar
  26. Eibes GM, Lu-Chau TA, Ruiz-Duenas FJ, Feijoo G, Martinez MJ, Martinez AT, Lema JM (2009) Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 32:129–134Google Scholar
  27. Faus I, C del Moral, N Adroer, JL del Rio, C Patino, H Sisniega, C Casas, J Blade & . Rubio (1998) Secretion of the sweet-tasting protein thaumatin by recombinant strains of Aspergillus niger var. awamori. Appl Microbiol Biotechnol 49:393-398Google Scholar
  28. Felenbok B (1991) The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J Biotechnol 17:11–17Google Scholar
  29. Forment JV, Ramon D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224Google Scholar
  30. Fowler T, Berka RM, Ward M (1990) Regulation of the glaA gene of Aspergillus niger. Curr Genet 18:537–545Google Scholar
  31. Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT (1998) Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res Immunol 149:589–599Google Scholar
  32. Gomi K, Akeno T, Minetoki T, Ozeki K, Kumagai C, Okazaki N, Iimura Y (2000) Molecular cloning and characterization of a transcriptional activator gene, amyR, involved in the amylolytic gene expression in Aspergillus oryzae. Biosci Biotechnol Biochem 64:816–827Google Scholar
  33. Gordon CL, Khalaj V, Ram AF, Archer DB, Brookman JL, Trinci AP, Jeenes DJ, Doonan JH, Wells B, Punt PJ, van den Hondel CA, Robson GD (2000) Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426Google Scholar
  34. Gouka RJ, Hessing JG, Punt PJ, Stam H, Musters W, Van den Hondel CA (1996a) An expression system based on the promoter region of the Aspergillus awamori 1, 4-beta-endoxylanase A gene. Appl Microbiol Biotechnol 46:28–35Google Scholar
  35. Gouka RJ, Punt PJ, Hessing JG, van den Hondel CA (1996b) Analysis of heterologous protein production in defined recombinant Aspergillus awamori strains. Appl Environ Microbiol 62:1951–1957Google Scholar
  36. Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384Google Scholar
  37. Guebel D, Torres-Daria N (2001) Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model. Electron J Biotech 4:1–14Google Scholar
  38. Guillemette T, van Peij NN, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, Stam H, Archer DB (2007) Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 8:158Google Scholar
  39. Gwynne DI, Buxton FP, Williams SA, Garven S, Davies RW (1987) Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans. Bio/Technology 5:713–719Google Scholar
  40. Gwynne DI, Buxton FP, Williams SA, Sills AM, Johnstone JA, Buch JK, Guo ZM, Drake D, Westphal M, Davies RW (1989) Development of an expression system in Aspergillus nidulans. Biochem Soc Trans 17:338–340Google Scholar
  41. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049Google Scholar
  42. Hintz WE, Lagosky PA (1993) A glucose-derepressed promoter for expression of heterologous products in the filamentous fungus Aspergillus nidulans. Biotechnology (N Y) 11:815–818Google Scholar
  43. Hofmann G, McIntyre M, Nielsen J (2003) Fungal genomics beyond Saccharomyces cerevisiae? Curr Opin Biotechnol 14:226–231Google Scholar
  44. Huge-Jensen B, Andreasen F, Christensen T, Christensen M, Thim L, Boel E (1989) Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae. Lipids 24:781–785Google Scholar
  45. Ishida H, Hata Y, Kawato A, Abe Y, Kashiwagi Y (2004) Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem 68:1849–1857Google Scholar
  46. Jacobs DI, Olsthoorn MM, Maillet I, Akeroyd M, Breestraat S, Donkers S, van der Hoeven RA, van den Hondel CA, Kooistra R, Lapointe T, Menke H, Meulenberg R, Misset M, Muller WH, van Peij NN, Ram A, Rodriguez S, Roelofs MS, Roubos JA, van Tilborg MW, Verkleij AJ, Pel HJ, Stam H, Sagt CM (2009) Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genet Biol 46(Suppl 1):S141–152Google Scholar
  47. Jeenes DJ, Marczinke B, MacKenzie DA, Archer DB (1993) A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol Lett 107:267–271Google Scholar
  48. Jin FJ, Watanabe T, Juvvadi PR, Maruyama J, Arioka M, Kitamoto K (2007) Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol 76:1059–1068Google Scholar
  49. Joosten V, Gouka RJ, van den Hondel CA, Verrips CT, Lokman BC (2005a) Expression and production of llama variable heavy-chain antibody fragments (V(HH)s) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392Google Scholar
  50. Joosten V, Roelofs MS, van den Dries N, Goosen T, Verrips CT, van den Hondel CA, Lokman BC (2005b) Production of bifunctional proteins by Aspergillus awamori: llama variable heavy chain antibody fragment (V(HH)) R9 coupled to Arthromyces ramosus peroxidase (ARP). J Biotechnol 120:347–359Google Scholar
  51. Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, Shiloach J (2007) Expression of human alpha1-proteinase inhibitor in Aspergillus niger. Microb Cell Fact 6:34Google Scholar
  52. Kelly JM, Hynes MJ (1987) Multiple copies of the amdS gene of Aspergillus nidulans cause titration of trans-acting regulatory proteins. Curr Genet 12:21–31Google Scholar
  53. Kim Y, Nandakumar MP, Marten MR (2008) The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomic Proteomic 7:87–94Google Scholar
  54. Kitamoto N, Matsui J, Kawai Y, Kato A, Yoshino S, Ohmiya K, Tsukagoshi N (1998) Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol 50:85–92Google Scholar
  55. Korman DR, Bayliss FT, Barnett CC, Carmona CL, Kodama KH, Royer TJ, Thompson SA, Ward M, Wilson LJ, Berka RM (1990) Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori. Curr Genet 17:203–212Google Scholar
  56. Levasseur A, Pagès S, Fierobe HP, Navarro D, Punt P, Belaïch JP, Asther M, Record E (2004) Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl Environ Microbiol 70:6984–91Google Scholar
  57. Liu L, Liu J, Qiu RX, Zhu XG, Dong ZY, Tang GM (2003) Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein-binding sequence containing CCAAT to the promoter. Lett Appl Microbiol 36:358–361Google Scholar
  58. Lombrana M, Moralejo FJ, Pinto R, Martin JF (2004) Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl Environ Microbiol 70:5145–5152Google Scholar
  59. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75Google Scholar
  60. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161Google Scholar
  61. MacRae WD, Buxton FP, Gwynne DI, Davies RW (1993) Heterologous protein secretion directed by a repressible acid phosphatase system of Aspergillus niger. Gene 132:193–198Google Scholar
  62. Maiya S, Grundmann A, Li SM, Turner G (2009) Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genet Biol 46:436–440Google Scholar
  63. Maras M, van Die I, Contreras R, van den Hondel CA (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16:99–107Google Scholar
  64. Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J 13:4022–4027Google Scholar
  65. Melzer G, Dalpiaz A, Grote A, Kucklick M, Gocke Y, Jonas R, Dersch P, Franco-Lara E, Nortemann B, Hempel DC (2007) Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producing and non-producing conditions. J Biotechnol 132:405–417Google Scholar
  66. Meyer V (2008) Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol Adv 26:177–185Google Scholar
  67. Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377Google Scholar
  68. Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775Google Scholar
  69. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2008) Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 3:1671–1678Google Scholar
  70. Mikosch T, Klemm P, Gassen HG, van den Hondel CA, Kemme M (1996) Secretion of active human mucus proteinase inhibitor by Aspergillus niger after KEX2-like processing of a glucoamylase-inhibitor fusion protein. J Biotechnol 52:97–106Google Scholar
  71. Moralejo FJ, Cardoza RE, Gutierrez S, Martin JF (1999) Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage. Appl Environ Microbiol 65:1168–1174Google Scholar
  72. Moralejo FJ, Watson AJ, Jeenes DJ, Archer DB, Martin JF (2001) A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspergillus awamori. Mol Genet Genomics 266:246–253Google Scholar
  73. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454Google Scholar
  74. Morita H, Okamoto A, Yamagata Y, Kusumoto K, Koide Y, Ishida H, Takeuchi M (2009) Heterologous expression and characterization of CpI, OcpA, and novel serine-type carboxypeptidase OcpB from Aspergillus oryzae. Appl Microbiol Biotechnol 85:335–346Google Scholar
  75. Muller C, McIntyre M, Hansen K, Nielsen J (2002) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68:1827–1836Google Scholar
  76. Nakajima K, Asakura T, Maruyama J, Morita Y, Oike H, Shimizu-Ibuka A, Misaka T, Sorimachi H, Arai S, Kitamoto K, Abe K (2006) Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae. Appl Environ Microbiol 72:3716–3723Google Scholar
  77. Natsume T, Egusa M, Kodama M, Johnson R, Itoh T, Itoh Y (2004) An appropriate increase in the transcription of Aspergillus nidulans uvsC improved gene targeting efficiency. Biosci Biotechnol Biochem 68:1649–1656Google Scholar
  78. Ngiam C, Jeenes DJ, Punt PJ, Van Den Hondel CA, Archer DB (2000) Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Appl Environ Microbiol 66:775–782Google Scholar
  79. Nikolaev I, Mathieu M, van de Vondervoort P, Visser J, Felenbok B (2002) Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger. Fungal Genet Biol 37:89–97Google Scholar
  80. Nielsen ML, Albertsen L, Lettier G, Nielsen JB, Mortensen UH (2006) Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. Fungal Genet Biol 43:54–64Google Scholar
  81. Pachlinger R, Mitterbauer R, Adam G, Strauss J (2005) Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microbiol 71:672–678Google Scholar
  82. Panozzo C, Capuano V, Fillinger S, Felenbok B (1997) The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. J Biol Chem 272:22859–22865Google Scholar
  83. Panozzo C, Cornillot E, Felenbok B (1998) The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem 273:6367–6372Google Scholar
  84. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231Google Scholar
  85. Perlinska-Lenart U, Kurzatkowski W, Janas P, Kopinska A, Palamarczyk G, Kruszewska JS (2005) Protein production and secretion in an Aspergillus nidulans mutant impaired in glycosylation. Acta Biochim Pol 52:195–206Google Scholar
  86. Pisanelli I, Kujawa M, Gschnitzer D, Spadiut O, Seiboth B, Peterbauer C (2010) Heterologous expression of an Agaricus meleagris pyranose dehydrogenase-encoding gene in Aspergillus spp. and characterization of the recombinant enzyme. Appl Microbiol Biotechnol 86:599–606Google Scholar
  87. Prathumpai W, McIntyre M, Nielsen J (2004a) The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans. Appl Microbiol Biotechnol 63:748–753Google Scholar
  88. Prathumpai W, Flitter SJ, McIntyre M, Nielsen J (2004b) Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Appl Microbiol Biotechnol 65:714–719Google Scholar
  89. Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45:1591–1599Google Scholar
  90. Qiu R, Zhu X, Liu L, Tang G (2002) Detection of a protein, AngCP, which binds specifically to the three upstream regions of glaA gene in A. niger T21. Sci China C Life Sci 45:527–537Google Scholar
  91. Record E, Punt PJ, Chamkha M, Labat M, van Den Hondel CA, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609Google Scholar
  92. Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161Google Scholar
  93. Roth AH, Dersch P (2010) A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Appl Microbiol Biotechnol 86:659–670Google Scholar
  94. Sagt CM, ten Haaft PJ, Minneboo IM, Hartog MP, Damveld RA, van der Laan JM, Akeroyd M, Wenzel TJ, Luesken FA, Veenhuis M, van der Klei I, de Winde JH (2009) Peroxicretion: a novel secretion pathway in the eukaryotic cell. BMC Biotechnol 9:48Google Scholar
  95. Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044Google Scholar
  96. Sotiriadis A, Keshavarz T, Keshavarz-Moore E (2001) Factors affecting the production of a single-chain antibody fragment by Aspergillus awamori in a stirred tank reactor. Biotechnol Prog 17:618–623Google Scholar
  97. Spencer JA, Jeenes DJ, MacKenzie DA, Haynie DT, Archer DB (1998) Determinants of the fidelity of processing glucoamylase-lysozyme fusions by Aspergillus niger. Eur J Biochem 258:107–112Google Scholar
  98. Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204Google Scholar
  99. Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470Google Scholar
  100. Tamalampudi S, Talukder MM, Hama S, Tanino T, Suzuki Y, Kondo A, Fukuda H (2007) Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida antarctica. Appl Microbiol Biotechnol 75:387–395Google Scholar
  101. Tani S, Kawaguchi T, Kato M, Kobayashi T, Tsukagoshi N (2000) A novel nuclear factor, SREB, binds to a cis-acting element, SRE, required for inducible expression of the Aspergillus oryzae Taka-amylase A gene in A. nidulans. Mol Gen Genet 263:232–238Google Scholar
  102. te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CA (2005) Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol 69:44–50Google Scholar
  103. Todaka N, Lopez CM, Inoue T, Saita K, Maruyama JI, Arioka M, Kitamoto K, Kudo T, Moriya S (2009) Heterologous expression and characterization of an endoglucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Appl Biochem Biotechnol 160:1168–78Google Scholar
  104. Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Jigami Y, Tamura G (1992) High level expression of the synthetic human lysozyme gene in Aspergillus oryzae. Appl Microbiol Biotechnol 38:109–114Google Scholar
  105. Turnbull IF, Rand K, Willetts NS, Hynes MJ (1989) Expression of the Escherichia coli enterotoxin subunit B gene in Aspergillus nidulans directed by the amdS promoter. Bio/Technology 7:169–174Google Scholar
  106. Turnbull IF, Smith DR, Sharp PJ, Cobon GS, Hynes MJ (1990) Expression and secretion in Aspergillus nidulans and Aspergillus niger of a cell surface glycoprotein from the cattle tick, Boophilus microplus, by using the fungal amdS promoter system. Appl Environ Microbiol 56:2847–2852Google Scholar
  107. Turner G (1990) Expression systems and protein production in filamentous fungi. In: Harris TJR (ed) Protein production in biotechnology. Elsvier Applied Science, LondonGoogle Scholar
  108. Upshall A, Kumar A, Bailey MC, Parker MD, Favreau MA, Lewison KP, Josep ML, Maraganore JM, McKnight GL (1987) Secretion of active human-tissue plasminogen-activator from the filamentous fungus Aspergillus nidulans. Bio/Technology 5:1301–1304Google Scholar
  109. Valkonen M, Ward M, Wang H, Penttila M, Saloheimo M (2003) Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol 69:6979–6986Google Scholar
  110. van den Brink HJ, Petersen SG, Rahbek-Nielsen H, Hellmuth K, Harboe M (2006) Increased production of chymosin by glycosylation. J Biotechnol 125:304–310Google Scholar
  111. van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, Visser (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256-263Google Scholar
  112. van den Hondel CA, Punt PJ, van Grocom RFM (1991) Heterologous gene expression in filamentous fungi. In: Bennette JE, Lasure LL (eds) More gene manipulations in fungi. Academic Press, pp 396-428Google Scholar
  113. van Dijck PW, Selten GC, Hempenius RA (2003) On the safety of a new generation of DSM Aspergillus niger enzyme production strains. Regul Toxicol Pharmacol 38:27–35Google Scholar
  114. van Gemeren IA, Beijersbergen A, van den Hondel CA, Verrips CT (1998) Expression and secretion of defined cutinase variants by Aspergillus awamori. Appl Environ Microbiol 64:2794–2799Google Scholar
  115. Verdoes JC, Punt PJ, Stouthamer AH, van den Hondel CA (1994) The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene. Gene 145:179–187Google Scholar
  116. Verdoes JC, Punt PJ, van den Hondel CA (1995) Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl Microbiol Biotechnol 43:195–205Google Scholar
  117. Villanueva A, Maccabe AP, Buesa J, Ramon D (1999) Apparent mRNA instability in Aspergillus nidulans and Aspergillus terreus of a heterologous cDNA encoding the major capsid antigen of Rotavirus. Rev Iberoam Micol 16:130–135Google Scholar
  118. Vogt K, Bhabhra R, Rhodes JC, Askew DS (2005) Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol 5:1Google Scholar
  119. Vongsangnak W, Salazar M, Hansen K, Nielsen J (2009) Genome-wide analysis of maltose utilization and regulation in aspergilli. Microbiology 155:3893–3902Google Scholar
  120. Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Biotechnology (N Y) 8:435–440Google Scholar
  121. Ward PP, Lo JY, Duke M, May GS, Headon DR, Conneely OM (1992a) Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology (N Y) 10:784–789Google Scholar
  122. Ward PP, May GS, Headon DR, Conneely OM (1992b) An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene 122:219–223Google Scholar
  123. Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N, Gieswein C, Park M, Wang H (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576Google Scholar
  124. Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44Google Scholar
  125. Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2:216–221Google Scholar
  126. Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10:61Google Scholar
  127. Yamada O, Ikeda R, Ohkita Y, Hayashi R, Sakamoto K, Akita O (2007) Gene silencing by RNA interference in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71:138–144Google Scholar
  128. Yano A, Kikuchi S, Nakagawa Y, Sakamoto Y, Sato T (2009) Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae. Microbiol Res 164:642–649Google Scholar
  129. Yaver DS, Lamsa M, Munds R, Brown SH, Otani S, Franssen L, Johnstone JA, Brody H (2000) Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol 29:28–37Google Scholar
  130. Yoder WT, Lehmbeck J, Borriss R (2004) Heterologous expression and protein secretion in filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluver Academic, pp 201-219Google Scholar
  131. Yoon J, Kimura S, Maruyama J, Kitamoto K (2009) Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol 82:691–701Google Scholar
  132. Yuan XL, Goosen C, Kools H, van der Maarel MJ, van den Hondel CA, Dijkhuizen L, Ram AF (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073Google Scholar
  133. Yuan XL, Roubos JA, van den Hondel CA, Ram AF (2008) Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 279:11–26Google Scholar
  134. Zheng XF, Kobayashi Y, Takeuchi M (1998) Construction of a low-serine-type-carboxypeptidase-producing mutant of Aspergillus oryzae by the expression of antisense RNA and its use as a host for heterologous protein secretion. Appl Microbiol Biotechnol 49:39–44Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Genetics, Technische Universität BraunschweigBraunschweigGermany
  2. 2.Department of Molecular Infection BiologyHelmholtz Centre for Infection ResearchBraunschweigGermany
  3. 3.Helmholtz-Zentrum für InfektionsforschungBraunschweigGermany

Personalised recommendations