Applied Microbiology and Biotechnology

, Volume 87, Issue 3, pp 899–911 | Cite as

Natural functions of mycotoxins and control of their biosynthesis in fungi

  • Massimo ReverberiEmail author
  • Alessandra Ricelli
  • Slaven Zjalic
  • Anna A. Fabbri
  • Corrado Fanelli


Mycotoxins are harmful secondary metabolites produced by a range of widespread fungi belonging in the main to Fusarium, Aspergillus and Penicillium genera. But why should fungi produce toxins? And how is the biosynthesis of these toxins regulated? Several separate factors are now known to be capable of modulating mycotoxin synthesis; however, in this study, focussing just on mycotoxins whose regulatory mechanisms have already been established, we introduce a further factor based on a novel consideration. Various different mycotoxin biosynthetic pathways appear to share a common factor in that they are all susceptible to the influence of reactive oxygen species. In fact, when a fungus receives an external stimulus, it reacts by activating, through a well-defined signal cascade, a profound change in its lifestyle. This change usually leads to the activation of global gene regulators and, in particular, of transcription factors which modulate mycotoxin gene cluster expression. Some mycotoxins have a clear-cut role both in generating a pathogenetic process, i.e. fumonisins and some trichothecenes, and in competing with other organisms, i.e. patulin. In other cases, such as aflatoxins, more than one role can be hypothesised. In this review, we suggest an “oxidative stress theory of mycotoxin biosynthesis” to explain the role and the regulation of some of the above mentioned toxins.


Mycotoxins Oxidative stress Oxylipins Signal perception Ecological role 


  1. Abbas A, Vales H, Dobson ADW (2009) Analysis of the effect of nutritional factors on OTA and OTB biosynthesis and polychetide syntase gene expression in Aspergillus ochraceus. Int J Food Microbiol 135:22–27CrossRefGoogle Scholar
  2. Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118CrossRefGoogle Scholar
  3. Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O (2009) Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155(5):1738–1747CrossRefGoogle Scholar
  4. Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12(10):1823–1836CrossRefGoogle Scholar
  5. Barnett P, Tabak HF, Hettema EH (2000) Nuclear hormone receptors arose from pre-existing protein modules during evolution. Trends Biochem Sci 25:227–228CrossRefGoogle Scholar
  6. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH (2008) VelB/VeA/LaeA complex coodirnates light signal with fungal development and secondary metabolism. Science 320:1504–1506CrossRefGoogle Scholar
  7. Beekrum S, Govinden R, Padayachee T, Odhav B (2003) Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Addit Contam 20:490–449CrossRefGoogle Scholar
  8. Bennett JW (1983) Differentiation and secondary metabolites in mycelial fungi. In: Bennet JW, Ciegler A (eds) Secondary metabolism and differentiation in fungi. Marcel Dekker, New York, pp 1–32Google Scholar
  9. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516CrossRefGoogle Scholar
  10. Boddu J, Cho S, Muehlbauer GJ (2007) Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microb Interact 20:1364–1375CrossRefGoogle Scholar
  11. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535CrossRefGoogle Scholar
  12. Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4:1574–1582CrossRefGoogle Scholar
  13. Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP (2006) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 74(12):6761–6768CrossRefGoogle Scholar
  14. Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol 67(2):378–391CrossRefGoogle Scholar
  15. Brown DW, Butchko RAE, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6(7):1210–1218CrossRefGoogle Scholar
  16. Caddick MX (1993) Perception and response: phenotypic plasticity in fungi. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 13–44Google Scholar
  17. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459CrossRefGoogle Scholar
  18. Champe SP, el-Zayat AA (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982–3988Google Scholar
  19. Chipley JR, Uraih N (1980) Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acids. Appl Environ Microbiol 40:352–357Google Scholar
  20. Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50CrossRefGoogle Scholar
  21. Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9:435–445CrossRefGoogle Scholar
  22. Dohlman HG, Thorner J (1997) RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem 272:3871–3874CrossRefGoogle Scholar
  23. Doohan FM, Weston G, Rezanoor HN, Parry DW, Nicholson P (1999) Development and use of a reverse transcription-PCR assay to study expression of tri5 by Fusarium species in vitro and in planta. Appl Environ Microbiol 65:3850–3854Google Scholar
  24. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in the life-history evolution. Proc Res Soc B 276:1737–1745CrossRefGoogle Scholar
  25. Ehrlich KC, Mantalbano BG, Cotty PJ (2005) Divergent regulation of aflatoxin production at acidic pH by two Aspergillus strains. Mycopathol 159:579–581CrossRefGoogle Scholar
  26. Ellner FM (2005) Results of long-term field studies into the effect of strobilurin containing fungicides on the production of mycotoxins in several winter wheat varieties. Mycol Res 21:112–115Google Scholar
  27. Fabbri AA, Fanelli C, Panfili G, Passi S, Fasella P (1983) Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A. flavus. J Gen Microbiol 129:3447–3452Google Scholar
  28. Fanelli C, Ricelli A, Reverberi M, Fabbri AA (2004) Aflatoxins and ochratoxins in cereal grains: an open challenge. Recent Res Devel Crop Sci 1:295–317Google Scholar
  29. Fennell DI, Bothast RJ, Lillehoj EB, Peterson RE (1973) Bright greenish-yellow fluorescence and associated fungi in white corn naturally contaminated with aflatoxin. Cereal Chem 50:404–408Google Scholar
  30. Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479CrossRefGoogle Scholar
  31. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122CrossRefGoogle Scholar
  32. Fisher R (2008) Sex and poison in the dark. Science 320:1430–1431CrossRefGoogle Scholar
  33. Fox ME, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487CrossRefGoogle Scholar
  34. Gao XQ, Kolomiets MV (2009) Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi. Toxic Rev 28:79–88CrossRefGoogle Scholar
  35. Gao XQ, Shim WB, Gobel C, Kunze S, Feussner I, Meeley R, Balint-Kurti P, Kolomiets M (2007) Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant Microb Interact 20:922–933CrossRefGoogle Scholar
  36. Gao XQ, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microb Interact 22(2):222–231CrossRefGoogle Scholar
  37. Gardiner DM, Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248:241–248CrossRefGoogle Scholar
  38. Gardiner DM, Kazan K, Manners JM (2009) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microb Interact 22(12):1588–1600CrossRefGoogle Scholar
  39. Georgianna DR, Payne GA (2009) Genetic regulation of aflatoxin biosynthesis: from gene to genome. Fungal Genet Biol 46:113–125CrossRefGoogle Scholar
  40. Halliwell B, Gutteridge JMC (2007a) Oxygen is a toxic gas—an introduction to oxygen toxicity and reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, New York, pp 1–29Google Scholar
  41. Halliwell B, Gutteridge JMC (2007b) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, New York, pp 187–267Google Scholar
  42. Han KH, Seo JA, Yu JH (2004) A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51:1333–1345CrossRefGoogle Scholar
  43. Harmann D (1956) Aging a theory based on free radical and radiation chemistry. J Gerontol 11:298–300Google Scholar
  44. Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein dependent signaling pathway. EMBO J 16:4916–4923CrossRefGoogle Scholar
  45. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180CrossRefGoogle Scholar
  46. Hountondji FCC, Hanna R, Sabelis MW (2006) Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae? Exp Appl Acarol 39:63–74CrossRefGoogle Scholar
  47. Jayashree T, Subramanyam C (2000) Oxidative stress is a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Rad Biol Med 10:981–985CrossRefGoogle Scholar
  48. Karolewiez A, Geisen R (2005) Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterisation of the ochratoxin polyketide synthase gene. Syst Appl Microbiol 28:588–595CrossRefGoogle Scholar
  49. Kim JH, Yu J, Mahoney N, Chan KL, Molyneux RJ, Varga J, Bhatnagar D, Cleveland TE, Nierman WC, Campbell BC (2008) Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122(1–2):49–60CrossRefGoogle Scholar
  50. Kimura M, Tokai T, Takahshi-Ando N, Ohsajo S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes and evolution. Biosci Biotechnol Biochem 71(9):2105–2123CrossRefGoogle Scholar
  51. Klich MA (2007) Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycosci 48:71–80CrossRefGoogle Scholar
  52. Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM (2006) FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 62:1418–1432CrossRefGoogle Scholar
  53. Lillehoj EB (1991) Aflatoxin: an ecologically elicited genetic activation signal. In: Smith JE, Henderson RS (eds) Mycotoxins and animal foods. CRC, Boca Raton, pp 2–30Google Scholar
  54. Lillehoj EB, Garcia WJ, Lambrow M (1974) Aspergillus flavus infection and aflatoxin production in corn: influence of trace elements. Appl Microbiol 28:763–767Google Scholar
  55. Lledias F, Rangel P, Hansberg W (1999) Singlet oxygen is part of a hyperoxidant state generated during spore germination. Free Rad Biol Med 26:1396–1404CrossRefGoogle Scholar
  56. Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19(24):6770–6777CrossRefGoogle Scholar
  57. Maggio-Hall LA, Wilson RA, Keller NP (2005) Fundamental contribution of beta-oxidation to polyketide mycotoxin production in planta. Mol Plant Microb Interact 18(8):783–793CrossRefGoogle Scholar
  58. Mahoney N, Molyneux RJ, Kim JH, Campbell BC, Waiss AC, Hagerman AE (2010) Aflatoxigenesis induced in Aspergilllus flavus by oxidative stress and reduction by phenolic antioxidants from tree nuts. World Mycotox J 3(1):45–48Google Scholar
  59. McDonald TT, Devi T, Shimizu K, Sim S-C, Keller NP (2004) Signaling events connecting mycotoxin biosynthesis and sporulation in Aspergillus and Fusarium spp. In: Yoshizawa T (ed) New horizon of mycotoxicology for assuring food safety. Proceedings of International Symposium of Mycotoxicology Takamatsu, Bookish Co, pp 139–147Google Scholar
  60. Miller DJ (2001) Factors that affect the occurrence of fumonisin. Environ Health Persp 109:321–324CrossRefGoogle Scholar
  61. Mita G, Fasano P, De Domenico S, Perrone G, Epifani F, Iannacone R, Casey R, Santino A (2007) 9-Lipoxygenase metabolism is involved in the almond/Aspergillus carbonarius interaction. J Exp Bot 58(7):1803–1811CrossRefGoogle Scholar
  62. Moake MM, Padilla-Zakour OI, Worobo RW (2005) Comprehensive review of patulin control methods in foods. Comp Rev Food Sci Food Safety 4(1):8–21CrossRefGoogle Scholar
  63. Narasaiah KV, Sashidar RB, Subramanyam C (2006) Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 162:179–189CrossRefGoogle Scholar
  64. Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S (2006) Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Mol Plant Microb Interact 19:512–520CrossRefGoogle Scholar
  65. Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210CrossRefGoogle Scholar
  66. O’Callaghan J, Stapleton PC, Dobson ADW (2006) Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet Biol 43:213–221CrossRefGoogle Scholar
  67. Paciolla C, Dipierro N, Mulè G, Logrieco A, Dipierro S (2004) The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplast. Physiol Mol Plant Pathol 65:49–56CrossRefGoogle Scholar
  68. Payne GA, Hagler WM (1983) Effect of specific aminoacids on growth and aflatoxin by Aspergillus parasiticus and A. flavus in defined media. Appl Environ Microbiol 171(3):1539–1545Google Scholar
  69. Peng XL, Xu WT, Wang Y, Huang KL, Liang ZH, Zhao WW, Luo YB (2010) Mycotoxin ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29:153–161CrossRefGoogle Scholar
  70. Ponts N, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2006) Accumulation of doexynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett 258:102–107CrossRefGoogle Scholar
  71. Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T (2007) Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEMS Lett 581:443–447Google Scholar
  72. Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett 293(2):255–262CrossRefGoogle Scholar
  73. Price MS, Yu J, Nierman WC, Kim HS, Pritchard B (2006) The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255:275–279CrossRefGoogle Scholar
  74. Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112CrossRefGoogle Scholar
  75. Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249CrossRefGoogle Scholar
  76. Ramirez ML, Chulze S, Magan N (2006) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int J Food Microbiol 106:291–296CrossRefGoogle Scholar
  77. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillum species. Microbiol 151:1325–1340CrossRefGoogle Scholar
  78. Reeves EP, Messina CG, Doyle S, Kavanagh K (2004) Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathol 158:73–79CrossRefGoogle Scholar
  79. Rementeria A, López-Molina N, Ludwig A, Belén Vivano B, Bikandi J, Pontón J, Garaizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23CrossRefGoogle Scholar
  80. Reverberi M, Fabbri AA, Zjalic S, Ricelli A, Punelli F, Fanelli C (2005) Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl Microbiol Biotechnol 69:207–215CrossRefGoogle Scholar
  81. Reverberi M, Zjalic S, Ricelli A, Fabbri AA, Fanelli C (2006) Oxidant/antioxidant balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Res 22(1):39–47CrossRefGoogle Scholar
  82. Reverberi M, Zjalic S, Ricelli A, Punelli F, Camera E, Fabbri C, Picardo M, Fanelli C, Fabbri AA (2008) Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukariot Cell 7(6):988–1000CrossRefGoogle Scholar
  83. Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA (2010) Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol 85:1935–1946CrossRefGoogle Scholar
  84. Reynoso MM, Torres AM, Ramirez ML, Rodriguez MI, Chulze SN, Magan N (2002) Efficacity of antioxidant mixtures on growth, fumonisin production and hydrolytic enzyme production by Fusarium verticillioides and F. proliferatum in vitro on maize-based media. Mycol Res 106:1093–1099CrossRefGoogle Scholar
  85. Ribeiro JMM, Cavaglieri LR, Fraga ME, Direito GM, Dalcero AM, Rosa CAR (2006) Influence of water activity, temperature and time on mycotoxins production on barley rootlets. Lett Appl Microbiol 42:179–184CrossRefGoogle Scholar
  86. Rohlfs M, Albert M, Keller NP, Kempken F (2007) Secondary chemicals protect mould from fungivory. Biol Lett 3:523–525CrossRefGoogle Scholar
  87. Roze LV, Arthur AE, Hong SY, Chanda A, Linz JE (2007a) The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol 66:713–726CrossRefGoogle Scholar
  88. Roze LV, Beaudry RM, Arthur AE, Calvo AM, Linz JE (2007b) Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Appl Environ Microbiol 73:7268–7276CrossRefGoogle Scholar
  89. Ruijter CJ, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114CrossRefGoogle Scholar
  90. Sagaram US, Kolomiets M, Shim WB (2006) Regulation of fumonisin biosynthesis in Fusarium verticillioides–maize system. Plant Pathol J 22(3):203–210Google Scholar
  91. Sanzani SM, Schena L, Nigro F, De Girolamo A, Ippolito A (2009) Effect of quercetin and umbelliferone on the transcript level of Penicillium expansum genes involved in patulin biosynthesis. Eur J Plant Pathol 125:223–233. doi: 10.1007/s10658-009-9475-6 CrossRefGoogle Scholar
  92. Schmidt-Heydt M, Baxter E, Geisen R, Magan N (2007) Physiological relationship between food preservatives, environmental factors, ochratoxin and otapksPv gene expression by Penicillium verrucosum. Int J Food Microbiol 119:277–283CrossRefGoogle Scholar
  93. Schmidt-Heydt M, Magan N, Geisen R (2008) Stress induction ofmycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284:142–149CrossRefGoogle Scholar
  94. Semighini CP, Harris SD (2008) Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179:1919–1932CrossRefGoogle Scholar
  95. Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591–600Google Scholar
  96. Shimizu K, Hicks JK, Huang TP, Keller NP (2003) Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics 165:1095–1104Google Scholar
  97. Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous fungi. Mycol Res 112:225–230CrossRefGoogle Scholar
  98. Sies H (1991) Oxidative stress II. Oxidants and antioxidants. Academic, LondonGoogle Scholar
  99. Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63(1):242–255CrossRefGoogle Scholar
  100. Teichert S, Wottawa M, Schonig B, Tudzynski B (2006) Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot Cell 5:1807–1819CrossRefGoogle Scholar
  101. Tolaini V, Zjalic S, Reverberi M, Fanelli C, Fabbri AA, Ricelli A (2010) Lentinula edodes enhances the biocontrol activity of Crypyptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits. Int J Food Microbiol 138:243–248Google Scholar
  102. Torres AM, Ramirez ML, Arroyo M, Chulze SN, Magan N (2003) Potential use of antioxidants for control of growth and fumonisin production by Fusarium verticillioides and F. proliferatum on whole maize grain. Int J Food Microbiol 83:319–324CrossRefGoogle Scholar
  103. Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892CrossRefGoogle Scholar
  104. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118CrossRefGoogle Scholar
  105. Tsuwanaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T (2004) Fungal metabolite gliotoxin inhibits assembly of the human respiratory Burst NADPH oxidase. Infect Immun 72(6):3373–3382CrossRefGoogle Scholar
  106. van Roermund CWT, Tabak HF, van den Berg M, Wanders RJA, Hettema EH (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150(3):489–498CrossRefGoogle Scholar
  107. Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98(3):277–279CrossRefGoogle Scholar
  108. White S, O’Callaghan J, Dobson ADW (2006) Cloning and molecular characterization of Penicillium expansum genes upregulated under conditions permissive for patulin biosynthesis. FEMS Microbiol Lett 255:17–26CrossRefGoogle Scholar
  109. Wilkinson JR, Yu J, Bland JM, Nierman WC, Bhatnagar D, Cleveland TE (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotechnol 74(6):1308–1319CrossRefGoogle Scholar
  110. Wilson RA, Gardner HW, Keller NP (2001) Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. Mol Plant Microb Interact 14:980–987CrossRefGoogle Scholar
  111. Yu JH, Keller NP (2005) Regulation of secondary metabolism in filamentous fungi. Ann Rev Phytopathol 43:437–458CrossRefGoogle Scholar
  112. Yu JH, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190Google Scholar
  113. Zonno MC, Vurro M (2002) Inhibition of germination of Orobanche ramosa seeds by Fusarium toxins. Phytoparasitica 30(5):519–524CrossRefGoogle Scholar
  114. Zuo X, Wu Y, Morris JS, Stimmel JB, Leesnitzer LM, Fischer SM, Lippman SM, Shureiqi I (2006) Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene 23–25(8):1225–1241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Massimo Reverberi
    • 1
    Email author
  • Alessandra Ricelli
    • 1
  • Slaven Zjalic
    • 1
  • Anna A. Fabbri
    • 1
  • Corrado Fanelli
    • 1
  1. 1.Department of Plant BiologyUniversity “Sapienza”RomeItaly

Personalised recommendations